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Abstract 

Posynomial Geometric Programming problems are considered to be complex in nature when the coefficients in 

the objective function, the constraints as well as on the right hand side of the constraints are in the form of an 

interval. Many approaches have been followedto find the approximate optimal solution for such type of 

geometric programming problems. In this paper, we have considered single objective posynomial geometric 

programming problem of above mentioned type. To solve such type of problems, we have converted the interval 

coefficient to a single number using interval valued function. Karush-Kuhn Tucker conditions are applied on 

this non-linear problem. To linearize the resulting non-linear problem we used first order Taylor’s series 

expansionwhich is further solved for the optimal solution. The function codes are written in Python and 

executed using Google Colab due to free availability and ease of use as compared to other mathematical tools. 

Keywords: Posynomial Geometric programming, Interval valued function, Karush-Kuhn Tucker conditions, 

Taylor’s series expansion 

 
1. Introduction 

Geometric programming is a special type of optimization which is widely used to solve various types of real 

world applications in numerous fields such as engineering, management etc. The basic theory of geometric 

programming is to find an optimum solution for posynomial, signomial and multi-objective functions subject to 

certain constraints. It is different from the other programming problems in the sense that the terms involved in 

objective function and the constraints are not only non-linear in nature but are in more complex form. So far, 

massive literature has been developed and studied on GP techniques. 
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The theory was first introduced by Duffin, Peterson and Zener in 1967. Later, the study was continued by many 

researchers. Beightler et al. [1], Avriel et al. [2], Duffin et al. [3], Kortanek et al. [4, 5], Rajgopal [6] established 

various methods to solve posynomial and signomial geometric programming problems. 

In 21st century, GP gained keen attention of the researchers. The theory was extended when the coefficients in 

the objective function, constraints, right hand side and exponents of the variables are multiple parameters and 

represented in form of an interval. Liu [7, 8], Ojha et al. [9], Mahapatra [10] gave the solution procedure to 

obtain the optimal solution of such type of complex problems. Ojha, Das [11], used Binary model to solve 

standard GPP by splitting the cost coefficients in the objective function, constraint coefficients and the 

exponents of the decision variable using binary numbers. 

 

Ojha, Biswal [12] focused on the formulation of multi-objective geometric programming problems and 

developed a solution procedure using weighted mean method. The parametric approach of Mahapatra, Mandal 

[10] for single objective posynomial GP was implemented by Mousavi, Saraj [13] for multi-objective geometric 

programming problem with interval coefficients. Das & Roy [14], considered a Gravel box problem and the 

solution was compared by solving this multi-objective programming problem having two objectives using 

weighted-sum method, weighted-product method and weighted min-max method. Ojha, Biswal [15], developed 

a solution procedure to find the non-inferior solution for multi-objective programming problem using ∈- 

constraint method. The similar multi-objective programming problem was solved by ∈-constraint method using 

KKT conditions by Ojha, Ota [16]. Ojha, Ota [17], adopted a dynamic approach named hybrid method to solve 

MOGPP in which ∈-constraint method was integrated with that of weighted mean method. Oz et al. [18], 

introduce a new numerical technique in which the weighted objective function was minimized by KKT 

conditions followed by first order Taylor’s series approximation. In Lexicogaphic multi-objective programming 

problem by Ojha, Biswal [19], objective functions can be prioritize and ranked by using row –column adoption 

method and eigen value method. 

 

The idea of fuzziness was laid by Cao [20]. Biswal [21] proposed fuzzy programming technique to solve multi- 

objective GP. 

 

In this paper, we considered single objective programming problem in which the cost coefficient in the objective 

function is represented in the form of an interval. To find the optimal solution for such type of problems we 

have firstly converted the interval coefficient to a single value by using interval valued function. Afterwards, we 

applied alternative approach proposed by Erzoy et al. [18] to obtain the pareto optimal solution. Using current 

approach, it will not be required to convert the problem to its dual. Moreover, it will be applicable to the GP 

with any degree of difficulty. Programming is done in Python to calculate the values of the objective function 

and constraints at initial feasible point and also to find the optimal solution of the transformed linear 

programming problem and the main GP problem. A web-based Python IDE platform called Google Colab is 

used to execute the programs. 

 

2. Preliminaries 

2.1 Posynomial Geometric programming problem 

The Standard posynomial geometric programming problem is written as: 
n m 

Minimize f (x) =  p  x
qi j

 

0 

 
lk m 

i=1 

i j 

j=i 

Subject to fk (x) =  ri k 

i =1 
 x

si j 1, 
j =i 

k = 1,2,. ..... , t 

x j   0 , j = 1,2,. ....... , m 

the exponents 

positive. 

qi j , si j can assume arbitrary real values where as the coefficients pi , ri k are assumed to be 

2.2 Posynomial Geometric programming problem with interval coefficients 

The general form of posynomial geometric programming problem with interval coefficients can be written as: 
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 

x x 

i 

n m 

Minimize f (x) = p , q   x
qi j

 

0 i i j 

i =1 j =i 
lk m 

Subject to f (x) = p , q   x
si j  b , c , k = 1,2,. ..... , t 

k 

i =1 

ik ik j 

j =i 

ik ik 

x j   0 , j = 1,2,. ....... , m 

the exponents qi j , si j can assume arbitrary real values where as the coefficients 

pi , qi , pik , qik , bik , cik are assumed to be positive. 

 

2.3 Interval-valued function 

Consider an interval[ p, q] with p  0 , q  0 . Then the interval valued function is defined as 

f (t) = p1−t qt for t 0,1 

2.4 KKT conditions 

For general mathematical programming problem: 

Min f0(x) 

Subject to 
fk (x)  0, k = 1,2, ...........t 

 

Then KKT conditions are stated as follows: 

xi  0, i = 1,2,........ , t 

 f0 (x) 
+ 

t
 

 x 
 fk (x) 

= 0,
 

k  x i = 1,2 ...... , t 
i k =1 i 

fk (x)  0, k = 1,2, .......... t 

k fk (x) = 0, k = 1,2, .......... t 

xi  0, i = 1,2, ....... , t 

2.5 Taylor’s series expansion for multivariable 

Consider a function f (x) . Let x = (x , x ,............, x )Rn and x0 = (x0 , x0 ,..........x0 )Rn . Let  f be 
1 2 n 1 2 n 

differentiable in N (x0 ) . Then the first order Taylor’s series expansion of f about x0 can be written as: 

= ( 0 )+ 
n

 ( 0 ) ( −  0 ) 
= 

f  
f (x) f x f x 

i 

i=1 

xi xi , f 
i x 

or 

f (x) =  f (x) 
+ 

 f  (x − x0 )+ 
 f 

 (x − x0 )+ ........... + 
 f 

 (x − x0 ) 
x0 

x 
 1 1 

x 
 2 2 

x 
 n n 

 1 x0  2 x0  n x0 

3. A Overview of Software used for Computation 

3.1 About Python 

Python is widely used in Mathematics as it is simple and having a rich set of libraries such as NumPy, SciPy, 

and SymPy. These libraries offer robust tools for numerical and symbolic computation. Python also provide 

powerful visualization options and can integrate with other languages for different tasks which require high 

performance. Its active community, extensive resources, and the interactive environment of Jupyter Notebooks 

 
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further support its use in Mathematical research and education. In additionto this, Python’s versatility makes it 

applicable in fields like data science and engineering, and it is open source, making it free to use. 

3.2 Significance of Google Colab 

Google Colaboratory named as Google colab provided by Google is a cloud based platform which allow the 

users to write and execute Python codes in their browsers. Some of important aspects of Google colab are as 

follows: 

• It is free to use and easily accessible through any web browser without installing any software in the 

computer. 

• The only requirement is to create a Google account and no setup is required. 

• Same notebook can be accessible to multiple users to work on the same project. 

• Can save work as a notebook which can be downloaded and shared to anyone anywhere worldwide just like 

a document. 

 
4. Algorithm to solve the problem 

The steps to find the optimal solution are as follows: 

Step I Choose the problem having interval coefficients and apply interval valued function to convert 

the interval coefficients to a single number. 

Step II Form a new function with the help of Lagrange multiplier. 

Step III Apply KKT conditions to obtain the constraints for the new function. 

Step IV Use Taylor’s theorem for multivariable to convert the non-linear model (obtained in step II and step 

III) to linear system. 

Step V Use Python Programming to calculate the values of the objective function and constraints at initial 

feasible point andalso to find the optimal solution of the GPP. UseGoogle Colab to execute the programs. 

 
5. Numerical example 

In this section, we have taken an example to illustrate the proposed structure of the current algorithm. We have 

considered the same problem that was also evaluated by Liu [10] and Mahapatra, Mandal [11] to check the 

applicability and the accuracy of the algorithm. In this example, the interval coefficient is considered only in the 

objective function. 
 

Problem: Min f (x) = (20,70) x−1 x
−1

2 x−1 + 20 x x + 20 x x x 
1 2 3 1  3 1  2  3 

Subject to 
1 

x−2 x−2 + 
4 

x
−1

2 x−1 1 , 
  

3 
1 2 

3  
2 3 

x1, x2 , x3 0 

5.1 Solution by Liu approach 

In this approach, the upper and the lower bound of the objective value of the given posynomial geometric 

programming problem is obtained. The lower bound of the solution is obtained by setting the lower end of the 

interval as the coefficient and the upper bound is obtained accordingly. Consider Z L and ZU be the objective 

values corresponding to lower and upper objective value. Thus the pair of geometric programs is as follows: 

 20 
w01 

 20 
w02 

 20 
w03 

 w  + w 
w11 

 4(w + w )
w12 

 

Z L = Max          11 12    11 12   
w  w01   w02   w03   3w11   3w12  

Subject to w01 + w02 + w03 = 1, 

− w01 + w02 + w03 − 2w11 = 0, 

− 
1 

w  + w  − 2w  + 
1 

w = 0, 
  

2 
01 03 11 

2  
12 

− w01 + w02 + w03 − w12 = 0, 

w01, w02 , w03 , w11, w12  0, ; 
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  
 

 70 
w01 

 20 
w02 

 20 
w03 

 w  + w 
w11 

 4(w + w )
w12 

 

ZU = Max          11 12    11 12   
w  w01   w02   w03   3w11   3w12  

Subject to w01 + w02 + w03 = 1, 

− w01 + w02 + w03 − 2w11 = 0, 

− 
1 

w  + w  − 2w  + 
1 

w 
  

= 0, 
2 

01 03 11 
2  

12 

− w01 + w02 + w03 − w12 = 0, 

w01, w02 , w03 , w11, w12  0, 

After solving, the lower bound of the objective value comes out to be Z L = 90 

 

 

 

 

corresponding to 

x1 = 1, x2 =1, x3 = 2 and the upper bound of the objective value is ZU = 115 corresponding to 

x1 = 1, x2 =1, x3 = 2 . 

 
5.2 Solution by Mahapatra and Mandal approach 

Using parametric form of an interval, the given problem is transformed to the following form: 

f (x, q) =  201−q 70q x−1 x
−1

2 x−1 + 20 x x + 20 x x x 
Min 1 2 3 1  3 1  2  3 

Subject to 
1 

x−2 x−2 + 
4 

x
−1

2 x−1 1 , 
  

3 
1 2 

3  
2 3 

x1, x2 , x3  0 where 0  q  1 

To obtain the solution, the problem thus converted to its corresponding dual problem: 

 201−q 70q 
w01 

 20 
w02 

 20 
w03 

 w  + w 
w11 

 4(w + w )
w12 

 

Max d (w, q) =          11 12    11 12   

 w01   w02   w03   3w11   3w12  

Subject to w01 + w02 + w03 = 1, 

− w01 + w02 + w03 − 2w11 = 0, 

− 
1 

w  + w  − 2w  + 
1 

w 
  

= 0, 
2 

01 03 11 
2  

12 

− w01 + w02 + w03 − w12 = 0, 

w01, w02 , w03 , w11, w12  0, 
 

q [0,1] 
The given problem is having degree of difficulty 1, thus from the above relations the value of all the 

variables is written in terms of any variable say w
12 as: 

w  = 
1− w12 ,

 
w = 

3w12 −1
,
 

w = 
3 − w12 ,

 w = 
1 

w 
01 

2
 02 

4
 03 

4
 11 

2  
12 

Therefore the dual of the problem is of the form: 
1−w12  

 

 
3w12−1 

 

 
3−w12  

 
d (w, q) =  2 201−q 70q  2  80 

 
 

  4  
  

4 

 2w12  

 1 − w
12    3w12 − 1  3 − w

12  
Thus solving the above dual problem using GP technique, the optimal solutions of the problem for different 

values of the parameter q are represented in the following table: 

 

Table 1. Optimal solutions of PGP 

q x1 x2 x3 f (x) Objective function 

80 
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−3 
2 

4 

0.0 1.431749 1.039924 0.6984466 39.60562 60.408423 

0.1 1.432887 1.042531 0.6978919 39.60774 63.052731 

0.2 1.434099 1.045312 0.6973020 39.61182 66.036641 

0.3 1.435390 1.048276 0.6966747 39.61512 69.411651 

0.4 1.436766 1.051436 0.6960077 39.62690 73.221986 

0.5 1.438231 1.054807 0.6952986 39.63848 77.527569 

0.6 1.439792 1.058401 0.6945447 39.65317 82.391603 

0.7 1.441456 1.062235 0.6937432 39.67134 87.885881 

0.8 1.443228 1.066325 0.6928914 39.69338 94.090929 

0.9 1.445116 1.070688 0.6919861 39.71974 101.097752 

1.0 1.447128 1.075343 0.6910240 39.75087 109.011978 

 

 

5.3 Solution by alternative approach(proposed method) 

Step I: Using interval valued function (def. 2.3); the given problem can be transformed 

to the following form: 

Min [ f (x)] = 201−q 70q x−1 x
−1

2 x−1 + 20 x x + 20 x x x 
q 1 2 3 1  3 1  2  3 

Subject to 
1 

x−2 x−2 + 
4 

x
−1

2 x−1 1 , 
  

3 
1 2 

3  
2 3 

x1, x2 , x3  0 
 

where 0  q  1 

By introducing the slack variables, the above problem takes the form: 

Min [ f (x)] = 201−q 70q x−1 x
−1

2 x−1 + 20 x x + 20 x x x 
q 1 2 3 1  3 1  2  3 

Subject to 
1 

x−2 x−2 + 
4 

x
−1

2 x−1 +  2 −1 = 0 , 
  

3 
1 2 

3  
2 3 1 

x1, x2 , x3  0 where 0  q  1 

Step II: Analogous to Lagrangian theorem and with the help of multiplier ( y1 , say), 

the aboveproblem can be defined as: 

Min [ f (x)] = 20
1−q 

70
q 

x
−1 

x
−1

2 x
−1 

+ 20 x x + 20 x x x − y (1 − 
1 

x
−2 

x
−2 

− 
4 

x
−1

2 x
−1 

−  2 
) 

q, y1 1 2 3 1  3 1  2  3 1 
 

3 
1 2 

 

3 
2 3 1 

Step III: For its local minima we apply KKT conditions, the problem takes the form: 

Min [ f (x)] = 201−q 70q x−1 x
−1

2 x−1 + 20 x x + 20 x x x 
q, y1 1 2 3 1  3 1  2  3 

Subject to − 201−q 70q x−2 x
−1

2 x−1 + 20x + 20x x − 
2 

y 
 

x−3 x−2 = 0 
1 2 3 3 

20
1−q 

70
q 

− 
−3 2 

2  3 
3  

1  1 2 

2 
− x 1 x  2 x−1 + 20x x − 

 y x−2 x−3 − y x x−1 = 0 
 

2 
1 2 3 1  3 

3  
1  1 2 

3 
1  2 3 

− 201−q 70q x−1 x
−1

2 x−2 + 20x + 20x x − 
4 

y 
 

x
−1

2 x−2 = 0 
1 2 3 

 
 1 

1 
 

 −2  −2 

 

1  2 
3  

1  2 3 

−1
2  −1  

y1 1 −  x1 

 3 
x2  −  x2 

3 
x3   0 

 
Step IV: Using first order Taylor’s series expansion for multivariable about any initial 

feasible point X 0 , the above non-linear problem can be converted to linear 

programming problem as below: 
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X 

X 

− 

X 

X 

X X 

x 1 x 2 x−1 20 x x x x0  20
1−q 

70
q 
x 

−1 
x 2 x −2 20 x x  x x0 

2 

X 

− 

2  

− − − 

1 2 3 1 3 

− − )+ − − 

2 

− 
−3 

+ 2 

2 

 3 

 

Min [ f (x)]  201−q 70q x−1 x
−1

2 x−1 + 20 x x + 20 x x x  + − 201−q 70q x−2 x
−1

2 x−1 + 20 x + 20 x x   (x − x0 )+ 
q, y1  


− 

20
1−q 

70
q 

−  
−3 

1 2 3 

 

+ 
  ( 

1  3 1 2 3  X 0 
 

− )+ − 
−1

 

1 2 3 

 

 + 

3 2 3  X 0  
1 1 

( − ) 
 1 2 3 

 
1 3  2 

 X 0 

2  1 2 3 1 1 2  X 0  
3 3 

… (1) 

Subject to 

− 201−q 70q x −2 x 

−1
2 x −1 + 20x + 20x x − 

2 
y x −3 x −2  + 2  201−q 70q x −3 x 

−1
2 x −1 + 2 y x −4 x −2  (x − x 0 ) + 


 

1 2 3 3 2  3 
3 

1 1 2  0 
 

1 2 3 1 1 2  0  
1 1 

 201−q 70q 2  
−3

2  −1 + 
4 −3  −3 

  ( − 0 ) +  1−q q  −2  
−1

2 −2 + + 
  ( − 0 )+ 


− 

2 −3 −2   ( − 0 )= 
 x

1  
x

2  
x

3 

 

 y1 x1 

3 
x

2  x
2 

x
2 

 X 0 


20 70 x1  x2 x3 20 20 x2 x3  x3 

X 0 
 3 

x1 x2 
 0

 

… (2) 
  201−q 70q  x −1 x −3 

2 x 1 + 20 x x − 
2 

y 
x −2 x −3 − 

2 
y −3  x 2 x 1 + 

 201−q 70q 
x −2 x −3 

2 x 1 + 20 x + 
4 

y x −3 x −3 
 (x − x 0 )+ 

 2 3 3 
1  2 3   

 X 0  2 
1 2 3 3 

3 
1  1 2  1 1 

 X 0 

3  201−q 70q  x −1 x −5 
2 x 1 + 2 y x −2 x −4 + y −5  x 2 x 1 (x −  201−q 70q 

x 0 x −1 x −3 2 x 2 + 20 x + 
2 

y −3  x 2 x 2 (x − x 0 )+ 
3  2 2  

 4  X 0  2 
1 2 3 1 

3 
1  2 3  3 3 

 X 0 


− 

2 
x −2 x −3 − 

2 
x 

−3
2 x −1  (y − y 0 )= 0 


 3 

1 2 
3 3  0 

… (3) 

− 201−q 70q x −1 x 

−1
2 x −2 + 20x + 20x x − 

4 
y x 

−1
2 x −2 


 + 201−q 70q x −2 x 

−1
2 x −2 + 20 + 20 x  (x − x 0 ) + 


 

1  2 3 1 1 2 
3 1 2

 3 
 0  

 
1  2 3 2  X 0 

1 1 

201−q 70q 1 2  −2 + 2 −3 −2 
 ( − 0 ) + 

 
 1−q q  −1  

−1
2 −3 + 

8 −1
2 −3  ( − 0 )+ 


− 

4 −1
2
 −2  ( − 0 )= 

 x1 x2  x3 

 
20 x1 

y1 x2 

3 
x3  x2 x2 

 X 0 


2 20 70 x1 x2 x3 y1 x2 

3 
x3 

 0

 
 3 

x2 x3 
 0

 

… (4) 
  

− 
1 

x −2 x −2 − 
4 

x 
−1

2 x −1  + 
 
y 

 2 
x −3 x −2  (x − x0 )+ 

 
y 

 2 
x −2 x −3 + 

2 
x 

−3
2 x −1 


 (x − x0 )+ 

 
y 

 4 
x 

−1
2 x −2 

  (x − x0 )+ 
 y1 1 

3 
1  2 

3 
2 3   1  

3 
1  2  1 1  1  

3 
1  2 

3 
2 3  2 2  1  

3 
2 3  3 3 

   X 0     X 0    X 0    X 0 


1 − 
1 

x −2 x −2 − 
4 

x 
−1

2 x −1  (y − y 0 ) 0 
 1  2 

 
2 3  1 1 

3  X 0 

… (5) 

Step V: Since q lies between 0 and 1, thus taking q = 0 and assuming the initial 

feasible point to be: 

X 0 = (x0 = 2, x0 = 2, x0 = 1, y0 = 2 ), 
1 2 3 1 

the linear programming problem (1) to (5) takes the form as below. It is noted that all the calculations are done 

on Google Colab. The codes are written in Python individually for every equation. For the sake of calculations, 

the variables x1, x2, x3 and y1 are replaced by a1, a2, a3 and b1 respectively whereas the initial point 
x0 , x0 , x0 , y 0 is taken as x1, x2, x3 and y1. 

1 2 3 1 

5.3.1 Python code of objective function eq. (1) for the linearized programming problem: 

 

Substituting initial values, Objective function takes the form: 

56.4644660940673a1+38.2322330470336a2+112.928932188135a3−175.251262658471 

 

5.3.2 Python code for first constraint eq. (2): 

minz=(((pow(20,1-q)*pow(70,q)*pow(x1,-1)*pow(x2,-1/2)*pow(x3,-1))+(20*x1*x3)+(20*x1*x2*x3))+((- 
pow(20,1-q)*pow(70,q)*pow(x1,-2)*pow(x2,-1/2)*pow(x3,-1)+20*x3+20*x2*x3)*(a1-x1))+(((-pow(20,1- 

q)*pow(70,q)/2)*pow(x1,-1)*pow(x2,-3/2)*pow(x3,-1)+20*x1*x3)*(a2-x2))+((-pow(20,1- 

q)*pow(70,q)*pow(x1,-1)*pow(x2,-1/2)*pow(x3,-2)+20*x1+20*x1*x2)*(a3-x3))) 

smpl = simplify(minz) 

smpl 

20 x + 

y1 y1 0 

1  1 2 

1 2 3 1 1 2 1 2 

1 1 

x3 x3 y1 y1 0 



119 
Journal for Educators, Teachers and Trainers JETT, Vol.14(6); ISSN:1989-9572 119 

 

 

 

Similarly, first constraint after simplification becomes: 

3.59803390593274a1+20.9255501431499a2+63.5355339059327a3−0.0208333333333333b1 
−56.1182359100307=0 

 

5.3.3 Code for second constraint eq. (3): 

 

Second constraint after simplification: 

20.9255501431499a1+1.74187860531805a2+42.2391714737574a3−0.256535593728849b1 

−49.3417959236596=0 

 

5.3.4 Code for third constraint eq. (4): 

 

Third constraint after simplification: 

63.5355339059327a1+42.2391714737574a2+17.9133717900592a3−0.942809041582063b1 
−116.533850361305=0 

 

5.3.5 Code for fourth constraint eq. (5): 

 

Fourth constraint after simplification: 

0.0416666666666667a1+0.513071187457698a2+1.88561808316413a3+0.0363576250846032b1 

−2.99509379141286  0 

Thus the resulting LPP corresponding to assumed feasible solution 

decimal places, takes the form: 

X 0 and for q = 0 , rounded off to four 

Min Z = 56.4645 x1 + 38.2322 
x

2 + 112.9289 
x3 - 175.2513 

C1=(((-pow(20,1-q)*pow(70,q)*pow(x1,-2)*pow(x2,-1/2)*pow(x3,-1))+(20*x3)+(20*x2*x3)-((2*y1*pow(x1,- 

*pow(x2,-2))/3))+((2*pow(20,1-q)*pow(70,q)*pow(x1,-3)*pow(x2,-1/2)*pow(x3,-1)+2*y1*pow(x1,- 

*pow(x2,-2))*(a1-x1))+((((pow(20,1-q)*pow(70,q)*pow(x1,-2)*pow(x2,-3/2)*pow(x3,- 

)/2)+20*x3+((4*y1*pow(x1,-3)*pow(x2,-3))/3))*(a2-x2))+((pow(20,1-q)*pow(70,q)*pow(x1,-2)*pow(x2,- 

1/2)*pow(x3,-2)+20+20*x2)*(a3-x3))-(((2*pow(x1,-3)*pow(x2,-2))/3)*(b1-y1))) 

smpl = simplify(C1) 

smpl 

C2=((((-pow(20,1-q)*pow(70,q)*pow(x1,-1)*pow(x2,-3/2)*pow(x3,-1))/2)+(20*x3*x1)-((2*y1*pow(x1,- 

2) *pow(x2,-3))/3)-((2*y1*pow(x2,-3/2)*pow(x3,-1))/3))+((((pow(20,1-q)*pow(70,q)*pow(x1,-2)*pow(x2,- 

3/2)*pow(x3,-1))/2)+20*x3+((4*y1*pow(x1,-3)*pow(x2,-3))/3))*(a1-x1))+((((3*pow(20,1- 

q)*pow(70,q)*pow(x1,-1)*pow(x2,-5/2)*pow(x3,-1))/4)+(2*y1*pow(x1,-2)*pow(x2,-4))+y1*pow(x2,- 

5/2)*pow(x3,-1))*(a2-x2))+((((pow(20,1-q)*pow(70,q)*pow(x1,-1)*pow(x2,-3/2)*pow(x3,- 

2) )/2)+20*x1+((2*y1*pow(x2,-3/2)*pow(x3,-2))/3))*(a3-x3))+((((-2*pow(x1,-2)*pow(x2,-3))/3)-((2*pow(x2,- 

3/2)*pow(x3,-1))/3))*(b1-y1))) 

smpl = simplify(C2) 
smpl 

C3=(((-pow(20,1-q)*pow(70,q)*pow(x1,-1)*pow(x2,-1/2)*pow(x3,-2))+(20*x1)+(20*x1*x2)-((4*y1*pow(x2,- 

1/2)*pow(x3,-2))/3))+((pow(20,1-q)*pow(70,q)*pow(x1,-2)*pow(x2,-1/2)*pow(x3,-2)+20+20*x2)*(a1- 

x1))+((((pow(20,1-q)*pow(70,q)*pow(x1,-1)*pow(x2,-3/2)*pow(x3,-2))/2)+20*x1+((2*y1*pow(x2,- 
3/2)*pow(x3,-2))/3))*(a2-x2))+((2*pow(20,1-q)*pow(70,q)*pow(x1,-1)*pow(x2,-1/2)*pow(x3,- 

3)+((8*y1*pow(x2,-1/2)*pow(x3,-3))/3))*(a3-x3))-(((4*pow(x2,-1/2)*pow(x3,-2))/3)*(b1-y1))) 

smpl = simplify(C3) 

smpl 

C4=((y1*(1-((pow(x1,-2)*pow(x2,-2))/3)-((4*pow(x2,-1/2)*pow(x3,-1))/3)))+(((2*y1*pow(x1,-3)*pow(x2,- 

2) )/3)*(a1-x1))+((y1*(((2*pow(x1,-2)*pow(x2,-3))/3)+((2*pow(x2,-3/2)*pow(x3,-1))/3)))*(a2- 

x2))+(((y1*4*pow(x2,-1/2)*pow(x3,-2))/3)*(a3-x3))+((1-((pow(x1,-2)*pow(x2,-2))/3)-((4*pow(x2,- 

1/2)*pow(x3,-1))/3))*(b1-y1))) 

smpl = simplify(C4) 

smpl 
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3.5980 

20.9256 

x
1 + 20.9256 x

2 + 63.5356 
x3 - 0.0208 

x
1 + 1.7419 x2 + 42.2392 

x3 - 0.2566 

y
1 - 56.1182 = 0 

y1 - 49.3418 = 0 

63.5356 x
1 + 42.2392 x2 + 17.9134 

x3 - 0.9428 y1 - 116.5339 = 0 

0.0417 x
1 + 0.5131 x

2 + 1.8856 
x3 + 0.0364 y

1 - 2.9951  0 

Thus our main non-linear problem is reduced into linear form which will be solved for the optimal solution. The 

calculations are again done using Python in Google Colab. 

 

5.3.6 The corresponding codes for the solution of the above linear programming problemare given as: 

 

5.3.7 Codes for the Optimal solution corresponding to x1, x2, x3, y1 and q=0 (rounded off upto four 

decimal places): 

 

pip install pulp 

from pulp import * 

importmatplotlib.pyplotasplt 

importnumpyas np 

# Create an object of a model 

prob = LpProblem("Simple LP Problem", LpMinimize) 

 

# Define the decision variables 

x1 = LpVariable("x1", 0) 

x2 = LpVariable("x2", 0) 

x3 = LpVariable("x3", 0) 

y1= LpVariable("y1", 0) 

# Define the objective function 

prob += (56.4645*x1) + (38.2322*x2) + (112.9289*x3) - (175.2513) 

# Define the constraints 

prob += (3.5980*x1) + (20.9256*x2) + (63.5355*x3) - (0.0208*y1) - (56.1182) == 0, "1st constraint" 

prob += (20.9256*x1) + (1.7419*x2) + (42.2391*x3) - (0.2565*y1) - (49.3418) == 0, "2nd constraint" 

prob += (63.5355*x1) + (42.2392*x2) + (17.9134*x3) - (0.9428*y1) - (116.5339) == 0, "3rd constraint" 

prob += (0.0417*x1) + (0.5131*x2) + (1.8856*x3) + (0.0364*y1) - (2.9951) >= 0, "4th constraint" 

 

Code cell <iOZ6S-uhUqjM> 

# %% [code] 

prob.solve() 

1 

 

# Print the results 

print ("Status: ", LpStatus[prob.status]) 

Status: Optimal 

 

for v inprob.variables(): 

print (v.name, "=", v.varValue) 

x1 = 1.7434617 

x2 = 0.84012202 

x3 = 0.52139342 

y1 = 41.433836 

fromsympyimport * 

 

q=0 
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The values of x1, x2 , x3, y1 and the optimal solutions for the objective function corresponding to different values 

of q are represented in the following table: 

Table 2. Optimal solution of PGP by alternative approach 

q 
 

x1 

 

x2 

 

x3 

 

y 
Solutions of 

Objective function of 

linear system 

Optimal solutions of 

Objective function for the 

main problem 

0.0 1.7435 0.8401 0.5214 41.4338 14.1925 57.4586 

0.1 1.7494 0.8664 0.5271 40.7617 17.9495 60.8321 

0.2 1.7556 0.8963 0.5332 40.0151 22.1184 64.4955 

0.3 1.7627 0.9292 0.5401 39.1865 26.7537 68.4686 

0.4 1.7702 0.9664 0.5475 38.2703 31.8764 72.7636 

0.5 1.7784 1.0076 0.5557 37.2587 37.5377 77.3986 

0.6 1.7871 1.0535 0.5645 36.1454 43.7701 82.3903 

0.7 1.7964 1.1046 0.5739 34.9240 50.6101 87.7594 

0.8 1.8061 1.1615 0.5840 33.5880 58.0917 93.5288 

0.9 1.8161 1.2249 0.5947 32.1312 66.2455 99.7252 

1.0 1.8262 1.2954 0.6058 30.5474 75.1022 106.3814 

 

The lower and upper objective values thus obtained are nearly the same as obtained in other approaches. Also 

the intermediate values can be obtained corresponding to values of q according to the requirement of the 

decision makers. 

 

6. Conclusion 

One problem that can be effectively addressed using interval valued is the scheduling of project tasks with 

uncertain durations. By representing the task durations as intervals rather than single point values, the 

scheduling algorithm can account for the inherent variability and uncertainty in the estimates. This allows for 

more robust and flexible scheduling plans that can adapt to changes and delays without requiring constant 

adjustments. Additionally, interval valued can help identify critical paths and potential bottlenecks in the project 

timeline, enabling better resource allocation and risk management. While converting interval coefficients to a 

single number can be useful for simplifying calculations, it may not necessarily provide a more accurate 

representation of critical paths and potential bottlenecks in the project timeline compared to other methods. 

Additionally, the complexity and time required for implementing multiple mathematical techniques and 

programming languages may outweigh the benefits gained from using them in this context. Therefore, it is 

important to carefully weigh the trade-offs between accuracy and efficiency when choosing the appropriate 

method for analyzing project constraints. It may be beneficial to consult with experts in operations research or 

project management to determine the most suitable approach for a specific project. By considering all factors, 

x1=1.7435 

x2=0.8401 

x3=0.5214 

minz=((pow(20,1-q)*pow(70,q)*pow(x1,-1)*pow(x2,-1/2)*pow(x3,-1))+20*x1*x3+20*x1*x2*x3) 

smpl = simplify(minz) 

smpl 

57.4583497077539 
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including the level of detail required, the available resources, and the desired outcome, project managers can 

make informed decisions that will ultimately lead to successful project completion. 
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