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ABSTRACT 

Modern agriculture relies heavily on water management, and because smart irrigation systems have the ability to 

maximize crop yields while optimizing water consumption, they have attracted a lot of interest. With predictive 

analytics, farmers can make data-driven decisions based on both historical and real-time data, which is why 

predictive analytics is so important to smart irrigation systems. Conventional irrigation techniques frequently 

depend on manual observations or set timetables, which may not fully reflect the water needs of crops. 

Furthermore, some current smart irrigation systems allocate water in an inefficient manner because they employ 

rule-based strategies that only take into account the most fundamental environmental aspects. These approaches 

might not completely utilize predictive analytics' promise and might not adjust adequately to shifting 

environmental conditions. In this work, we provide a predictive analytics method that uses machine learning 

algorithms with temperature and humidity data obtained from Node-MCU to optimize water management in 

smart irrigation systems. The technology predicts the best irrigation plan for each crop by using the learned 

machine learning models to estimate future water requirements based on real-time data.  

 

INTRODUCTION 

1.1 Overview 

Predictive analytics is revolutionizing water management within smart irrigation systems, offering a 

comprehensive and data-driven approach to optimize water usage in agriculture and landscaping. This 

innovative technology relies on the seamless integration of various data sources, including weather forecasts, 

soil moisture measurements, crop-specific data, and historical irrigation patterns. By harnessing the power of 

predictive analytics, smart irrigation systems can make informed decisions and recommendations for efficient 

water management. 

One of the core aspects of this approach involves leveraging real-time and forecasted weather data to anticipate 

weather conditions, such as rainfall, temperature, humidity, and wind patterns. This information enables the 

system to proactively adjust irrigation schedules, ensuring that water is used judiciously and preventing 

overwatering when rain is expected.Furthermore, predictive analytics continuously monitors soil moisture levels 

through embedded sensors in the soil. This data is then analyzed to determine the optimal timing and quantity of 

irrigation needed to maintain ideal soil conditions, thus avoiding water wastage and the risk of waterlogging. 

Moreover, the system takes into account the specific water requirements of different crop types, tailoring 

irrigation schedules to each crop's needs. This precision not only conserves water but also maximizes crop 

yields, contributing to sustainable agriculture practices.Historical irrigation data is another vital component. 

Predictive analytics mines this data to identify long-term trends, such as seasonal variations or crop-specific 

preferences, enabling the system to fine-tune irrigation strategies for improved efficiency. 
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Resource allocation is also optimized through predictive analytics, considering factors like energy and labor. 

This ensures that resources are used efficiently, leading to cost savings and reduced environmental impact.Smart 

irrigation systems with predictive analytics capabilities are capable of sending real-time alerts and 

recommendations to users. These alerts can include suggestions for adjusting irrigation schedules based on 

predicted weather conditions, helping users make informed decisions to prevent water waste. 

Moreover, these systems often offer remote control capabilities, allowing users to make real-time adjustments to 

irrigation settings based on predictive insights, even when they are not physically present on-site. This feature 

enhances convenience and responsiveness in managing water resources effectively. 

So, predictive analytics is a game-changer in the realm of smart irrigation, providing precise, data-driven 

solutions for optimizing water management. By integrating real-time data, predictive modeling, and historical 

trends, these systems promote water conservation, reduce operational costs, improve crop yields, and contribute 

to sustainable and responsible water management practices. In a world where water resources are increasingly 

scarce, this technology holds immense promise for ensuring the efficient and sustainable use of this vital 

resource in agriculture and landscaping. 

1.2 Research Motivation 

The research motivation for implementing predictive analytics for optimal water management in smart irrigation 

systems is driven by a confluence of critical challenges and opportunities. 

First and foremost, water scarcity has become a pressing global concern. Climate change, population growth, 

and urbanization are placing unprecedented demands on freshwater resources, and agriculture accounts for a 

substantial portion of global water consumption. As a result, there is an urgent need to maximize the efficiency 

of water usage in agriculture to ensure food security while minimizing environmental impact. Predictive 

analytics offers a promising solution by enabling precision irrigation, which reduces water wastage and 

promotes responsible water management. 

Furthermore, the unpredictability of weather patterns due to climate change exacerbates the challenge of water 

management in agriculture. Predictive analytics can help mitigate this uncertainty by integrating real-time 

weather data into irrigation decisions. This allows farmers and landowners to adapt their irrigation practices 

proactively, conserving water during periods of expected rainfall and optimizing irrigation during dry spells. 

Additionally, the economic implications of water management cannot be overlooked. Agriculture is a significant 

sector in many economies, and inefficient water usage translates into higher operational costs. Predictive 

analytics can optimize resource allocation, leading to cost savings for farmers and promoting economic 

sustainability. 

Moreover, sustainability is a growing concern in agriculture, driven by consumer demand for environmentally 

responsible practices. Smart irrigation systems with predictive analytics align with these sustainability goals by 

reducing water consumption, minimizing runoff and soil erosion, and promoting crop health. This, in turn, 

enhances the overall sustainability of agricultural practices. 

Furthermore, advancements in technology have made predictive analytics more accessible and affordable for 

farmers and landowners, making it a viable solution for a broader range of agricultural settings. As these 

systems become more widespread, there is a growing need for research to refine and optimize their capabilities, 

tailoring them to specific crops, climates, and regions. 

So, the research motivation for predictive analytics in smart irrigation stems from the urgent need to address 

water scarcity, adapt to changing climate conditions, reduce economic costs, and embrace sustainability in 

agriculture. This technology holds immense promise in revolutionizing water management practices, ensuring 

the efficient and responsible use of water resources, and ultimately contributing to the long-term viability of 

agricultural systems worldwide. 

1.3 Problem Statement 

The problem statement for implementing predictive analytics for optimal water management in smart irrigation 

systems can be articulated as follows: 

The global agriculture sector faces a multifaceted challenge characterized by the increasing demand for food 

production, escalating water scarcity due to climate change, and the imperative to reduce environmental impact. 

This confluence of issues underscores the critical need for efficient water management practices in agriculture. 

Despite technological advancements in smart irrigation systems, there remains a substantial gap in achieving 

precision and sustainability in water usage. The current problem lies in the lack of comprehensive and data-

driven approaches to address this challenge. Existing irrigation systems often rely on rudimentary scheduling 

methods that do not adapt to real-time weather variations, leading to over-irrigation, resource inefficiency, and 

environmental degradation. Moreover, the absence of crop-specific insights and historical trend analysis further 

exacerbates the problem, hindering optimal water allocation. 

The unpredictable nature of climate change exacerbates this issue, necessitating the need for a proactive and 

adaptive solution. Farmers and landowners require tools that integrate real-time weather data, soil moisture 

measurements, and crop-specific information to make informed irrigation decisions. Additionally, the economic 
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implications of inefficient water usage, including escalating operational costs, underscore the urgency of this 

problem. The lack of sustainable water management practices not only threatens agricultural viability but also 

poses environmental and social risks. 

Hence, the problem statement at hand is the development and implementation of predictive analytics within 

smart irrigation systems to address these pressing issues comprehensively. This entails integrating diverse data 

sources, such as weather forecasts, soil moisture data, and historical irrigation patterns, into predictive models 

that can optimize water allocation and scheduling. The challenge lies in designing and fine-tuning predictive 

algorithms that are adaptable, accurate, and cost-effective, thus bridging the existing gap between traditional 

irrigation practices and sustainable, data-driven water management solutions. 

1.4 Applications 

The application of predictive analytics for optimal water management in smart irrigation systems holds 

tremendous potential across various domains, including agriculture, landscaping, and environmental 

conservation. Here are four detailed application scenarios: 

• Precision Agriculture: Predictive analytics in smart irrigation systems are a game-changer for precision 

agriculture. By integrating real-time weather data, soil moisture measurements, and crop-specific 

insights, these systems can precisely determine when and how much water each crop needs. This not 

only maximizes crop yields but also conserves water resources by avoiding over-irrigation. In addition, 

the ability to remotely control irrigation based on predictive insights allows farmers to fine-tune their 

irrigation strategies, even from afar, ensuring optimal crop health and resource efficiency. 

• Landscaping and Turf Management: Beyond agriculture, smart irrigation systems find applications in 

landscaping and turf management. Predictive analytics can tailor irrigation schedules to the specific 

needs of lawns, golf courses, parks, and gardens. This not only enhances the visual appeal of these 

spaces but also reduces water consumption and maintenance costs. By accounting for weather forecasts 

and historical trends, these systems can optimize irrigation to create lush and healthy landscapes while 

minimizing waste. 

• Water Resource Conservation: Predictive analytics in smart irrigation systems play a crucial role in 

conserving water resources. By avoiding unnecessary irrigation during rainy periods and adjusting 

schedules based on anticipated weather conditions, these systems contribute to responsible water 

management. This is particularly important in regions facing water scarcity, as it helps prevent over-

extraction of groundwater and reduces the strain on local water sources, promoting environmental 

sustainability. 

• Environmental Impact Mitigation: Smart irrigation systems with predictive analytics capabilities can 

have a positive environmental impact. By preventing excessive runoff and soil erosion resulting from 

over-irrigation, they help maintain soil quality and prevent water pollution. Additionally, the reduction 

in energy consumption associated with optimized irrigation practices contributes to lower greenhouse 

gas emissions, aligning with broader environmental conservation goals. 

 

2.LITERATURE SURVEY 

According to the Food and Agriculture Organization (FAO) of the United Nations, it is estimated that around 

70% of all water withdrawal worldwide is due to agricultural applications [1], contrasting the industrial sector at 

20% with municipalities’ local infrastructure for services and domestic water use taking the remaining 10%. 

This seems a logical percentage distribution given that around 2000 to 3000 L of water are required to grow 

food per person daily [2]. Nonetheless, what is more concerning regarding this volume of water is that 93% 

never returns to its original source, signifying an apparent complete loss of the resource. 

Irrigation efficiency refers to the ratio of water the crop uses to the total amount of water extracted from the 

source [3]. Different factors affect irrigation efficiency, like water run-off, evaporation, and deep percolation. 

Water efficiency mostly depends on the hydraulic infrastructure and irrigation method, while surface irrigation 

has a water efficiency from 50% to 65%, sprinklers range from 60% to 85%, and drip irrigation from 80% to 

90% [4]. Surface irrigation implies surface evaporation, which contributes to water loss. Sprinkler technology 

reduces water loss but, still, the applied water evaporates off the leaves of the crop canopy. In contrast, drip 

irrigation delivers water directly to the plant’s root zone, reducing losses due to run-off and evaporation [5]. In 

any case, water efficiency can be considerably improved when a sensor-based smart irrigation system is 

installed over the hydraulic infrastructure [6]. 

Notwithstanding, food production is stated to rise in the following ten years and for many decades to come. In 

[7], the author states that the demand for food and agricultural products is projected to further increase by up to 

70% by 2050 in order to satisfy the requirements for an estimated 10-billion-person population by then. That, in 

addition to the growing effect of climate change on water shortage worldwide, can have terrible consequences in 

the near future regarding resource allocation and availability for agricultural purposes. Vulnerable communities 

in arid regions would potentially suffer the consequences of water scarcity and global warming more [8]. 
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Moreover, severe social conflicts have already occurred in rural communities due to the unfair assignation of 

water resources for agricultural activities [9]. Therefore, technology and data-driven solutions for water 

management are required to improve resource efficiency, reduce water waste, and contribute to sustainable 

agriculture practices [10]. 

 

3.PROPOSED SYSTEM 

3.1 Overview 

This project aims to create a web application for predicting irrigation requirements based on input features like 

crop type, moisture level, and temperature. Here's an overview of the provided code: 

• Importing Libraries: The initial section imports necessary libraries including Flask for web 

development, pandas for data manipulation, and scikit-learn modules for machine learning tasks. 

• Initialization: An instance of the Flask application is created. 

• Loading Models and Data: Random Forest Classifier and Regressors are loaded as models. 

Additionally, a LabelEncoder is initialized to transform categorical features. The dataset is loaded from 

a CSV file and preprocessed by encoding the categorical feature 'crop' into numerical values. 

• Routes: 

o '/' Route: Renders the home page, typically an HTML template named 'index.html'. 

o '/predict' Route: Handles POST requests containing form data for prediction. It extracts input 

features like crop type, moisture level, and temperature from the form. The categorical feature 

'crop' is encoded using the LabelEncoder. Then, the classification model predicts whether to 

turn on or off the pump. If the pump is predicted to be turned on, regression models predict 

the amount of water required (liters) and the number of days until the next watering. The 

results are formatted into a dictionary and passed to the 'result.html' template for display. 

• Rendering Templates: 

o 'index.html': Represents the homepage containing a form to input crop type, moisture level, 

and temperature. 

o 'result.html': Displays the prediction results including the action to take (turn on or off the 

pump), predicted water requirements in liters, and days until the next watering. 

• Running the Application: Finally, the application runs in debug mode allowing for easy debugging 

during development. 

 
Figure 3.1 Proposed methodology. 

3.2 Random Forest Classifier 

Random Forest is a popular machine learning algorithm that belongs to the supervised learning technique. It can 

be used for both Classification and Regression problems in ML. It is based on the concept of ensemble learning, 

which is a process of combining multiple classifiers to solve a complex problem and to improve the 

performance of the model. As the name suggests, "Random Forest is a classifier that contains a number of 
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decision trees on various subsets of the given dataset and takes the average to improve the predictive accuracy 

of that dataset." Instead of relying on one decision tree, the random forest takes the prediction from each tree 

and based on the majority votes of predictions, and it predicts the final output. The greater number of trees in the 

forest leads to higher accuracy and prevents the problem of overfitting. 

 
Fig. 3.2: Random Forest algorithm. 

3.3 Random Forest algorithm 

Step 1: In Random Forest n number of random records are taken from the data set having k number of records. 

Step 2: Individual decision trees are constructed for each sample. 

Step 3: Each decision tree will generate an output. 

Step 4: Final output is considered based on Majority Voting or Averaging for Classification and regression 

respectively. 

3.3.2 Important Features of Random Forest 

• Diversity- Not all attributes/variables/features are considered while making an individual tree, each 

tree is different. 

• Immunetothecurseofdimensionality- Since each tree does not consider all the features, the feature 

space is reduced. 

• Parallelization-Each tree is created independently out of different data and attributes. This means that 

we can make full use of the CPU to build random forests. 

• Train-Testsplit- In a random forest we don’t have to segregate the data for train and test as there will 

always be 30% of the data which is not seen by the decision tree. 

• Stability- Stability arises because the result is based on majority voting/ averaging. 

3.3.3 Assumptions for Random Forest 

Since the random forest combines multiple trees to predict the class of the dataset, it is possible that some 

decision trees may predict the correct output, while others may not. But together, all the trees predict the correct 

output. Therefore, below are two assumptions for a better Random Forest classifier: 

• There should be some actual values in the feature variable of the dataset so that the classifier can 

predict accurate results rather than a guessed result. 

• The predictions from each tree must have very low correlations. 

Below are some points that explain why we should use the Random Forest algorithm 

• It takes less training time as compared to other algorithms. 

• It predicts output with high accuracy, even for the large dataset it runs efficiently. 

• It can also maintain accuracy when a large proportion of data is missing. 

3.3.4 Types of Ensembles 

Before understanding the working of the random forest, we must look into the ensemble technique. Ensemble 

simply means combining multiple models. Thus, a collection of models is used to make predictions rather than 

an individual model. Ensemble uses two types of methods: 
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Bagging– It creates a different training subset from sample training data with replacement & the final output is 

based on majority voting. For example, Random Forest. Bagging, also known as Bootstrap Aggregation is the 

ensemble technique used by random forest. Bagging chooses a random sample from the data set. Hence each 

model is generated from the samples (Bootstrap Samples) provided by the Original Data with replacement 

known as row sampling. This step of row sampling with replacement is called bootstrap. Now each model is 

trained independently which generates results. The final output is based on majority voting after combining the 

results of all models. This step which involves combining all the results and generating output based on majority 

voting is known as aggregation. 

 
Fig. 3.3: RF Classifier analysis. 

Boosting– It combines weak learners into strong learners by creating sequential models such that the final 

model has the highest accuracy. For example, ADA BOOST, XG BOOST. 

 
Fig. 3.4: Boosting RF Classifier. 

3.4 Random Forest Regressor 

A Random Forest regression is a powerful ensemble learning technique used in machine learning for both 

regression and classification tasks. It is based on the concept of decision trees and combines the predictions of 

multiple decision trees to improve the overall accuracy and robustness of the model.  

Data Preparation: The process begins with a dataset that contains input features (independent variables) and 

corresponding target values (the variable you want to predict). 
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Bootstrapping (Random Sampling): Random Forest creates multiple subsets of the original dataset through a 

process called bootstrapping. This means that for each tree in the forest, a random sample of the data is taken 

with replacement. Some data points may appear multiple times in a subset, while others may be omitted. 

Tree Building: For each subset of data, a decision tree is constructed. The construction of each tree involves 

selecting the best feature to split the data at each node. This selection is typically based on criteria like Gini 

impurity or mean squared error reduction. 

Random Feature Selection: An essential aspect of Random Forest is that it introduces randomness during the 

tree-building process. Instead of considering all features at each node, it randomly selects a subset of features to 

choose from. This helps to decorrelate the trees and make them more diverse. 

Tree Growing: The decision trees are allowed to grow until a stopping criterion is met. This may involve 

specifying a maximum depth for the tree or setting a minimum number of samples required to split a node. 

Ensemble Aggregation: Once all the trees are constructed, they are used to make predictions on new data points. 

For regression tasks, the predictions of individual trees are averaged (or sometimes weighted) to obtain the final 

ensemble prediction. In the case of classification tasks, a majority vote is typically used. 

Random Forest Prediction: The final prediction from the Random Forest ensemble is the average (or weighted 

average) of the predictions made by individual trees. This prediction tends to be more accurate and less prone to 

overfitting compared to a single decision tree. 

Evaluation: The performance of the Random Forest regression model is evaluated using appropriate metrics like 

Mean Absolute Error (MAE), Mean Squared Error (MSE), or R-squared (R2) on a separate validation or test 

dataset. 

3.5 Advantages 

The outlined methodology for predictive analytics in smart irrigation systems offers several notable advantages, 

making it a powerful approach for optimizing water management in agriculture and landscaping: 

• Data-Driven Decision Making: By utilizing data collected from Node MCU devices and employing 

machine learning models, this methodology enables data-driven decision-making in water 

management. This means that irrigation decisions are based on real-time and historical data, leading to 

more informed and precise actions. 

• Precision Irrigation: One of the primary advantages is the ability to achieve precision in irrigation. 

Machine learning models, such as Random Forest Classifier and Regression, can determine exactly 

when and how much water is needed for different crops and conditions. This precision minimizes over-

irrigation, reducing water wastage and associated costs. 

• Resource Efficiency: The methodology optimizes the allocation of resources, including water, energy, 

and labor. By accurately predicting water requirements and automating the irrigation process, it 

maximizes resource efficiency, leading to reduced operational costs and improved sustainability. 

• Adaptation to Changing Conditions: Smart irrigation systems using predictive analytics can adapt to 

changing weather conditions. They can delay irrigation when rain is expected or increase it during dry 

spells, ensuring that crops receive the right amount of water regardless of unpredictable weather 

patterns. 

• Remote Monitoring and Control: The ability to remotely monitor and control irrigation based on 

predictive insights offers convenience and flexibility to farmers and landowners. They can make real-

time adjustments to irrigation settings, even when not physically present on-site, enhancing operational 

efficiency and responsiveness. 

• Environmental Benefits: The methodology promotes environmentally responsible water management. 

By preventing over-irrigation and runoff, it reduces soil erosion and minimizes the pollution of local 

water sources. Additionally, by conserving water and energy, it contributes to a reduction in 

greenhouse gas emissions. 

• Economic Savings: Smart irrigation systems powered by predictive analytics can lead to significant 

cost savings. Reduced water consumption, energy usage, and labor costs translate into lower 

operational expenses for farmers and landowners, improving their economic sustainability. 

• Improved Crop Yields: Precision irrigation ensures that crops receive the optimal amount of water, 

promoting healthier growth and potentially increasing crop yields. This can have a positive impact on 

agricultural productivity and food security. 

• Scalability: The methodology is scalable and adaptable to various agricultural settings and crop types. 

Whether applied to small-scale farming or large commercial operations, the approach can be 

customized to suit the specific needs of the users. 

• Sustainability: Overall, the methodology contributes to sustainable agriculture practices. It aligns with 

global sustainability goals by conserving water resources, reducing environmental impact, and 

promoting responsible water management in a world where water scarcity is an increasing concern. 
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4.RESULTS  

4.1Results description 

The result consists of a prediction based on the input provided by the user through the web form. If the 

prediction indicates that the pump should be turned on (clf_prediction[0] == 1), the app uses the regression 

models to predict the amount of water (liters_prediction) to pour and the number of days (days_prediction) 

before pouring water again. If the prediction indicates that the pump should be kept off (clf_prediction[0] == 0), 

the app simply suggests keeping the pump off without providing further predictions. 

The application combines classification and regression models to make decisions about whether to turn on the 

irrigation pump and how much water to pour. Random Forest is used as it's a versatile algorithm suitable for 

both classification and regression tasks, and it handles non-linear relationships well. Label Encoding is used to 

transform categorical data into numerical format, which is necessary for machine learning models. 

The application is designed to be user-friendly, as it provides input fields for the user to interact with and receive 

predictions. Flask is chosen as the web framework due to its simplicity and flexibility for building small to 

medium-sized web applications. The code lacks error handling and input validation, which are important for 

ensuring the robustness of the application. The dataset path (your_dataset_path) should be replaced with the 

actual path to the dataset for the application to work properly. 

 
Figure 4.1: Sample dataset using NODE-MCU sensor 

The above figure-1 represents the sample dataset using NODE-MCU sensor. The sensor is used to collect & 

measure the levels of weather conditions like moisture, temperature and type of the crop. 

 
Figure 4.2: Performance Evaluation of Random Forest Regression 

The above figure2 represents the Performance evaluation of the plot. We will calculate this evaluation using 

performance metrics such as mean absolute error(MAE), mean squared error(MSE), R2, mean absolute 

percentage error(MAPE). With the help of metrics, we will predict the performance of Actual values Vs 

predicted values. 



 

Journal for Educators Teachers and Trainers JETT,Vol. 14(2);ISSN:1989-9572                         709                                   

 

 

 
Figure 4.3: Classification Report of Random Forest Classifier 

Here, we are calculating the overall accuracy of the model by using Random forest classification algorithm. And 

also calculating the precision values, recall, f1-score, support etc.  

 
Figure 4.4: Confusion Matrix of Random Forest Classifier 

We are predicting the values of confusion matrix such as TP, TN, FP, FN using Random Forest classification 

algorithm. It generates a heatmap visualization of the confusion matrix for a Random Forest Classifier's 

predictions compared to the actual labels.  



 

Journal for Educators Teachers and Trainers JETT,Vol. 14(2);ISSN:1989-9572                         710                                   

 

 

 
Figure 4.5: GUI Design of Smart Irrigation using flask server 

The above figure-5 represents about the Design of graphical user interface (GUI) of our Smart irrigation project. 

It contains the input fields as Crop type, moisture, temperature. Based on the soil moisture levels, it predicts the 

output.  

 
Figure 4.6: Home Page 

The above figure-6 illustrates that, we will assign the input values in the required fields which are measured by 

the sensor, then it will predict the output based on that levels. 

 
Figure 4.7: Prediction Result 
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It will predict the output as whether we should on/off the pump. If the pump is in ON mode, then it will also 

provide the amount of water that the crop required and the duration of period to pour again to the crops. It is 

based on the soil moisture conditions. 

 
Figure 4.8: Home page 

Here, we will give the values of the moisture, temperature, crop into the required fields. Then it will predict the 

output regarding those input values. 

 
Figure 4.9: Prediction Result 

It will give the output as keep the pump off. It means there is no requirement of water to the crops. The crops 

have the sufficient water, so based on the weather conditions it will predict that the pump is in OFF mode.  

 

Table 2 compares the overall performance comparison of various ML models.Accuracy is a measure of how 

well a model correctly predicts both the positive and negative classes. In this table, the accuracy percentages 

indicate the overall correctness of the models' predictions. For example, the Naive Bayes Classifier achieves an 

accuracy of 72%, while the RFC (Random Forest Classifier) achieves an accuracy of 97%. This suggests that 

the RFC model performs significantly better in terms of overall accuracy. 

Precision measures the proportion of true positive predictions among all the positive predictions made by the 

model. It indicates how well the model avoids false positives. For the Naive Bayes Classifier, the precision for 

the positive class is 83%, while for the RFC classifier, it is 97%. The RFC model demonstrates higher precision, 

meaning it has a lower rate of false positive predictions. Recall, also known as sensitivity, measures the 

proportion of true positive predictions among all actual positive instances. It indicates how well the model 

captures positive cases. In this table, the Naive Bayes Classifier has a recall of 72%, while the RFC classifier 

has a recall of 97%. The RFC model excels in capturing positive instances, resulting in a higher recall. 

 The F1-score is the harmonic mean of precision and recall. It provides a balanced measure of a model's 

performance, considering both false positives and false negatives. For the Naive Bayes Classifier, the F1-score 
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is 85%, whereas for the RFC classifier, it is also 97%. The RFC model demonstrates a better balance between 

precision and recall, leading to a higher F1-score. 

 

Table 2: Overall performance comparison of proposed ML models. 

Model name Accuracy (%) Precision (%) Recall (%) F1-score 

Naive bayes Classifier 72 83 72 85 

RFC classifier 97 97 97 97 

 

Table 3 presents a detailed comparison of the class-wise performance metrics for two machine learning models: 

the Naive Bayes Classifier and the RFC. The models are evaluated based on their ability to classify instances 

into two classes: "Pump OFF" and "Pump ON." 

• Pump OFF: This row represents performance metrics for the "Pump OFF" class. 

• Precision: Precision for "Pump OFF" measures how accurately the model predicts instances when 

the pump should be turned off. For the Naive Bayes Classifier, the precision is 0.73, indicating that 

73% of the predicted "Pump OFF" instances were correct. In contrast, the RFC classifier achieves 

a perfect precision of 100% for this class, meaning it correctly identifies all instances of "Pump 

OFF." 

• Recall: Recall (or sensitivity) for "Pump OFF" measures the model's ability to capture all actual 

instances when the pump should be turned off. The Naive Bayes Classifier has a recall of 0.86, 

signifying that it captures 86% of the actual "Pump OFF" instances. The RFC classifier has a recall 

of 94%, indicating that it captures 94% of the "Pump OFF" instances. 

• F1-score: The F1-score for "Pump OFF" is the harmonic mean of precision and recall, providing a 

balanced measure of the model's performance. The Naive Bayes Classifier achieves an F1-score of 

0.85 for "Pump OFF," while the RFC classifier attains an F1-score of 0.97. The RFC model 

demonstrates a more balanced performance in terms of precision and recall for this class. 

• Pump ON: This row represents performance metrics for the "Pump ON" class. 

• Precision: Precision for "Pump ON" measures how accurately the model predicts instances when 

the pump should be turned on. The Naive Bayes Classifier achieves a precision of 0.88, indicating 

that 88% of the predicted "Pump ON" instances are correct. The RFC classifier achieves a 

precision of 95% for this class. 

• Recall: Recall for "Pump ON" assesses the model's ability to capture all actual instances when the 

pump should be turned on. The Naive Bayes Classifier has a recall of 0.97, signifying that it 

captures 97% of the actual "Pump ON" instances. The RFC classifier achieves a perfect recall of 

100%, indicating that it captures all "Pump ON" instances. 

• F1-score: The F1-score for "Pump ON" is the harmonic mean of precision and recall, providing a 

balanced measure of the model's performance. The Naive Bayes Classifier achieves an F1-score of 

0.88 for "Pump ON," while the RFC classifier attains an F1-score of 0.97. The RFC model 

demonstrates a more balanced performance for this class as well. 

Table 3: Class-wise performance comparison of proposed ML models. 

 

Model name 

Naive bayes Classifier RFC classifier 

Pump OFF Pum ON Pump OFF Pum ON 

Precision 0.73 0.88 100 95 

Recall 0.86 0.97 94 100 

F1-score 0.85 0.88 97 97 

 

 

5.CONCLUSION 

In conclusion, the implementation of predictive analytics for optimal water management in smart irrigation 

systems represents a transformative approach to address the pressing challenges of water scarcity, resource 

efficiency, and sustainability in agriculture and landscaping. This methodology, built upon the collection of data 

from Node MCU devices, data preprocessing, machine learning models, and precise decision-making, offers a 

host of advantages. It enables data-driven, precision irrigation, leading to reduced water wastage, resource 

efficiency, and cost savings. The adaptability to changing weather conditions, remote monitoring, and 

environmental benefits contribute to responsible water management and reduced environmental impact. 

Moreover, the potential for increased crop yields and scalability make this approach invaluable to both small-

scale farmers and large commercial operations. As global concerns about water resources and sustainable 

agriculture intensify, the application of predictive analytics in smart irrigation systems stands as a promising 

solution to address these challenges effectively. 



 

Journal for Educators Teachers and Trainers JETT,Vol. 14(2);ISSN:1989-9572                         713                                   

 

 

 

REFERENCES 

[1]. Koncagül, E.; Tran, M.; Connor, R. The United Nations World Water Development Report 2021: 

Valuing Water; Facts and Figures. Technical Report, UNESCO. 2021. Available online: 

https://www.unesco.org/reports/wwdr/2021/en/download-report (accessed on 3 May 2023). 

[2]. Omran, H.A.; Mahmood, M.S.; Kadhem, A.A. A study on current water consumption and its 

distribution in Bahr An-Najaf in Iraq. Int. J. Innov. Sci. Eng. Technol. 2014, 1, 538–543.  

[3]. Grafton, R.Q.; Williams, J.; Perry, C.J.; Molle, F.; Ringler, C.; Steduto, P.; Udall, B.; Wheeler, S.A.; 

Wang, Y.; Garrick, D.; et al. The paradox of irrigation efficiency. Science 2018, 361, 748–750.  

[4]. Munir, M.S.; Bajwa, I.S.; Naeem, M.A.; Ramzan, B. Design and Implementation of an IoT System for 

Smart Energy Consumption and Smart Irrigation in Tunnel Farming. Energies 2018, 11, 3427.  

[5]. Hunter, M.C.; Smith, R.G.; Schipanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: 

Recalibrating Targets for Sustainable Intensification. BioScience 2017, 67, 386–391.  

[6]. El-Fakharany, Z.M.; Salem, M.G. Mitigating climate change impacts on irrigation water shortage using 

brackish groundwater and solar energy. Energy Rep. 2021, 7, 608–621.  

[7]. Pluchinotta, I.; Pagano, A.; Giordano, R.; Tsoukiàs, A. A system dynamics model for supporting 

decision-makers in irrigation water management. J. Environ. Manag. 2018, 223, 815–824.  

[8]. Sharma, A.; Jain, A.; Gupta, P.; Chowdary, V. Machine Learning Applications for Precision 

Agriculture: A Comprehensive Review. IEEE Access 2021, 9, 4843–4873.  

[9]. Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision support systems for agriculture 4.0: 

Survey and challenges. Comput. Electron. Agric. 2020, 170, 105256.  

[10]. Bu, F.; Wang, X. A smart agriculture IoT system based on deep reinforcement learning. 

Future Gener. Comput. Syst. 2019, 99, 500–507.  


	ISSN 1989-9572
	DOI:10.47750/jett.2023.14.02.065

	Journal for Educators, Teachers and Trainers, Vol. 14(2)

