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ABSTRACT 

Water management is a crucial aspect of modern agriculture, and the adoption of smart irrigation 

systems has gained significant attention due to its potential to optimize water usage while maximizing 

crop yields. Predictive analytics plays a vital role in smart irrigation systems, enabling farmers to 

make data-driven decisions based on real-time and historical data.  Traditional irrigation methods 

often rely on fixed schedules or manual observations, which may not accurately represent the actual 

water requirements of crops. Additionally, some existing smart irrigation systems use rule-based 

approaches that consider only basic environmental factors, potentially leading to suboptimal water 

allocation. These methods may not adapt well to changing environmental conditions and may not 

fully exploit the potential of predictive analytics.  In this study, we propose a predictive analytics 

approach for optimal water management in smart irrigation systems using machine learning 

algorithms with temperature, humidity data acquired from Node-MCU. The trained machine learning 

models are used to forecast future water requirements based on real-time data, allowing the system to 

predict the optimal irrigation schedule for each crop. 

Keywords: Smart Irrigation, Random Forest Classifier, Ensemble Learning, Boosting 

1. INTRODUCTION 

Predictive analytics is revolutionizing water management within smart irrigation systems, offering a 

comprehensive and data-driven approach to optimize water usage in agriculture and landscaping. This 

innovative technology relies on the seamless integration of various data sources, including weather 

forecasts, soil moisture measurements, crop-specific data, and historical irrigation patterns. By 

harnessing the power of predictive analytics, smart irrigation systems can make informed decisions 

and recommendations for efficient water management.One of the core aspects of this approach 

involves leveraging real-time and forecasted weather data to anticipate weather conditions, such as 
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rainfall, temperature, humidity, and wind patterns. This information enables the system to proactively 

adjust irrigation schedules, ensuring that water is used judiciously and preventing overwatering when 

rain is expected.Furthermore, predictive analytics continuously monitors soil moisture levels through 

embedded sensors in the soil. This data is then analyzed to determine the optimal timing and quantity 

of irrigation needed to maintain ideal soil conditions, thus avoiding water wastage and the risk of 

waterlogging. 

Moreover, the system takes into account the specific water requirements of different crop types, 

tailoring irrigation schedules to each crop's needs. This precision not only conserves water but also 

maximizes crop yields, contributing to sustainable agriculture practices.Historical irrigation data is 

another vital component. Predictive analytics mines this data to identify long-term trends, such as 

seasonal variations or crop-specific preferences, enabling the system to fine-tune irrigation strategies 

for improved efficiency. 

Resource allocation is also optimized through predictive analytics, considering factors like energy and 

labor. This ensures that resources are used efficiently, leading to cost savings and reduced 

environmental impact.Smart irrigation systems with predictive analytics capabilities are capable of 

sending real-time alerts and recommendations to users. These alerts can include suggestions for 

adjusting irrigation schedules based on predicted weather conditions, helping users make informed 

decisions to prevent water waste.So, predictive analytics is a game-changer in the realm of smart 

irrigation, providing precise, data-driven solutions for optimizing water management. By integrating 

real-time data, predictive modeling, and historical trends, these systems promote water conservation, 

reduce operational costs, improve crop yields, and contribute to sustainable and responsible water 

management practices. In a world where water resources are increasingly scarce, this technology 

holds immense promise for ensuring the efficient and sustainable use of this vital resource in 

agriculture and landscaping. 

2.LITERATURE SURVEY 

According to the Food and Agriculture Organization (FAO) of the United Nations, it is estimated that 

around 70% of all water withdrawal worldwide is due to agricultural applications [1], contrasting the 

industrial sector at 20% with municipalities’ local infrastructure for services and domestic water use 

taking the remaining 10%. This seems a logical percentage distribution given that around 2000 to 

3000 L of water are required to grow food per person daily [2]. Nonetheless, what is more concerning 

regarding this volume of water is that 93% never returns to its original source, signifying an apparent 

complete loss of the resource.Irrigation efficiency refers to the ratio of water the crop uses to the total 

amount of water extracted from the source [3]. Different factors affect irrigation efficiency, like water 

run-off, evaporation, and deep percolation. Water efficiency mostly depends on the hydraulic 

infrastructure and irrigation method, while surface irrigation has a water efficiency from 50% to 65%, 

sprinklers range from 60% to 85%, and drip irrigation from 80% to 90% [4]. Surface irrigation 

implies surface evaporation, which contributes to water loss. Sprinkler technology reduces water loss 

but, still, the applied water evaporates off the leaves of the crop canopy. In contrast, drip irrigation 

delivers water directly to the plant’s root zone, reducing losses due to run-off and evaporation [5]. In 

any case, water efficiency can be considerably improved when a sensor-based smart irrigation system 

is installed over the hydraulic infrastructure [6].Notwithstanding, food production is stated to rise in 

the following ten years and for many decades to come. In [7], the author states that the demand for 

food and agricultural products is projected to further increase by up to 70% by 2050 in order to satisfy 

the requirements for an estimated 10-billion-person population by then. That, in addition to the 

growing effect of climate change on water shortage worldwide, can have terrible consequences in the 
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near future regarding resource allocation and availability for agricultural purposes. Vulnerable 

communities in arid regions would potentially suffer the consequences of water scarcity and global 

warming more [8]. Moreover, severe social conflicts have already occurred in rural communities due 

to the unfair assignation of water resources for agricultural activities [9]. Therefore, technology and 

data-driven solutions for water management are required to improve resource efficiency, reduce water 

waste, and contribute to sustainable agriculture practices [10].The waste and overuse of water 

resources for crop irrigation is a relevant topic that has been addressed by precision agriculture from 

different perspectives [11]. In this sense, automatic irrigation systems aim to optimize water 

utilization while helping farmers to improve crop yields by providing the right amount of water, at the 

right time, in the right place in the field [12]. To control the amount of water used during irrigation, 

typically these systems conduct measurements of soil moisture levels (volumetric water content), 

environmental parameters (solar radiation, wind speed, air temperature, air humidity), and crop 

conditions (canopy temperature, chlorophyll content, trunk diameter) . 

 

 

3.PROPOSED SYSTEM 

3.1 Overview 

The comprehensive methodology outlines the step-by-step process for conducting research on 

predictive analytics for smart irrigation systems. It involves data collection, preprocessing, model 

training, evaluation, and ultimately, the application of predictive insights to optimize water 

management practices. This research can significantly enhance the efficiency and sustainability of 

water usage in agriculture and landscaping. Figure 1 shows the proposed system model. The detailed 

operation illustrated as follows: 

Node MCU Dataset: The research begins by collecting data from Node MCU devices installed within 

the smart irrigation system. These devices likely capture data such as soil moisture levels, weather 

conditions, and potentially other relevant parameters. This dataset serves as the foundation for the 

subsequent analysis and modeling. 

Data Preprocessing: Raw data collected from Node MCU devices may contain inconsistencies, 

outliers, or missing values. Data preprocessing involves cleaning and transforming the dataset to 

ensure it is suitable for analysis. This may include removing duplicates, handling missing data, and 

addressing outliers. 

Label Encoding: In predictive analytics, it's crucial to convert categorical variables, into numerical 

values that machine learning models can understand. Label encoding assigns a unique numerical label 

to each category. 

Defining of Training and Testing Data for Classification and Regression: The dataset is split into two 

subsets: one for classification tasks and another for regression tasks. Classification tasks may include 

predicting whether the irrigation pump should be turned on or off based on current conditions, while 

regression tasks may involve predicting the number of liters to be watered or the time required to 

supply water. 

Data Splitting for Classification: For classification tasks, the dataset is further divided into training 

and testing sets. The training set is used to train the machine learning model, while the testing set is 

reserved to evaluate its performance. A common split might be, for example, 70% of the data for 

training and 30% for testing. 
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Data Splitting for Regression: Similarly, for regression tasks, the dataset is divided into training and 

testing sets. Regression models are trained on the training set and evaluated on the testing set to 

predict continuous values like the number of liters to be watered or the time needed for water supply. 

Random Forest Classifier Model: For classification tasks (e.g., determining when to turn the pump on 

or off), a machine learning model like Random Forest Classifier is employed. Random Forest is an 

ensemble learning method that combines multiple decision trees to make accurate predictions. It's 

suitable for tasks where data may have complex relationships. 

Random Forest Regression Model: For regression tasks (e.g., predicting liters of water needed or time 

for water supply), a Random Forest Regression model is used. Similar to the classifier, it's an 

ensemble method that can handle both linear and non-linear relationships in the data, making it 

effective for predicting continuous values. 

 

Figure 1 Proposed methodology. 

Final Predictions: Once the models are trained and evaluated, they are used to make predictions. For 

classification, the model predicts whether to turn the pump on or off based on current conditions. For 

regression, it predicts the number of liters to be watered and the time required for water supply. 

Additionally, it can be used to determine when to turn the pump on and off based on the predicted 

supply time. 

3.2 Random Forest Classifier 

Random Forest is a popular machine learning algorithm that belongs to the supervised learning 

technique. It can be used for both Classification and Regression problems in ML. It is based on the 

concept of ensemble learning, which is a process of combining multiple classifiers to solve a complex 

problem and to improve the performance of the model. As the name suggests, "Random Forest is a 

classifier that contains a number of decision trees on various subsets of the given dataset and takes the 

average to improve the predictive accuracy of that dataset." Instead of relying on one decision tree, 

the random forest takes the prediction from each tree and based on the majority votes of predictions, 

and it predicts the final output. The greater number of trees in the forest leads to higher accuracy and 

prevents the problem of overfitting. 
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Fig. 2: Random Forest algorithm. 

3.2.1 Random Forest algorithm 

Step 1: In Random Forest n number of random records are taken from the data set having k number of 

records. 

Step 2: Individual decision trees are constructed for each sample. 

Step 3: Each decision tree will generate an output. 

Step 4: Final output is considered based on Majority Voting or Averaging for Classification and 

regression respectively. 

3.2.2 Important Features of Random Forest 

• Diversity- Not all attributes/variables/features are considered while making an individual 

tree, each tree is different. 

• Immunetothecurseofdimensionality- Since each tree does not consider all the features, the 

feature space is reduced. 

• Parallelization-Each tree is created independently out of different data and attributes. This 

means that we can make full use of the CPU to build random forests. 

• Train-Testsplit- In a random forest we don’t have to segregate the data for train and test as 

there will always be 30% of the data which is not seen by the decision tree. 

• Stability- Stability arises because the result is based on majority voting/ averaging. 

3.2.3 Assumptions for Random Forest 

Since the random forest combines multiple trees to predict the class of the dataset, it is possible that 

some decision trees may predict the correct output, while others may not. But together, all the trees 

predict the correct output. Therefore, below are two assumptions for a better Random Forest 

classifier: 

• There should be some actual values in the feature variable of the dataset so that the classifier 

can predict accurate results rather than a guessed result. 

• The predictions from each tree must have very low correlations. 

Below are some points that explain why we should use the Random Forest algorithm 

• It takes less training time as compared to other algorithms. 

• It predicts output with high accuracy, even for the large dataset it runs efficiently. 
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• It can also maintain accuracy when a large proportion of data is missing. 

3.2.4 Types of Ensembles 

Before understanding the working of the random forest, we must look into the ensemble technique. 

Ensemble simply means combining multiple models. Thus, a collection of models is used to make 

predictions rather than an individual model. Ensemble uses two types of methods: 

Bagging– It creates a different training subset from sample training data with replacement & the final 

output is based on majority voting. For example, Random Forest. Bagging, also known as Bootstrap 

Aggregation is the ensemble technique used by random forest. Bagging chooses a random sample 

from the data set. Hence each model is generated from the samples (Bootstrap Samples) provided by 

the Original Data with replacement known as row sampling. This step of row sampling with 

replacement is called bootstrap. Now each model is trained independently which generates results. 

The final output is based on majority voting after combining the results of all models. This step which 

involves combining all the results and generating output based on majority voting is known as 

aggregation. 

 
Fig. 3: RF Classifier analysis. 

Boosting– It combines weak learners into strong learners by creating sequential models such that the 

final model has the highest accuracy. For example, ADA BOOST, XG BOOST. 

 
Fig. 4: Boosting RF Classifier. 

3.3 Random Forest Regressor 

A Random Forest regression is a powerful ensemble learning technique used in machine learning for 

both regression and classification tasks. It is based on the concept of decision trees and combines the 

predictions of multiple decision trees to improve the overall accuracy and robustness of the model.  
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Data Preparation: The process begins with a dataset that contains input features (independent 

variables) and corresponding target values (the variable you want to predict). 

Bootstrapping (Random Sampling): Random Forest creates multiple subsets of the original dataset 

through a process called bootstrapping. This means that for each tree in the forest, a random sample of 

the data is taken with replacement. Some data points may appear multiple times in a subset, while 

others may be omitted. 

Tree Building: For each subset of data, a decision tree is constructed. The construction of each tree 

involves selecting the best feature to split the data at each node. This selection is typically based on 

criteria like Gini impurity or mean squared error reduction. 

Random Feature Selection: An essential aspect of Random Forest is that it introduces randomness 

during the tree-building process. Instead of considering all features at each node, it randomly selects a 

subset of features to choose from. This helps to decorrelate the trees and make them more diverse. 

Tree Growing: The decision trees are allowed to grow until a stopping criterion is met. This may 

involve specifying a maximum depth for the tree or setting a minimum number of samples required to 

split a node. 

Ensemble Aggregation: Once all the trees are constructed, they are used to make predictions on new 

data points. For regression tasks, the predictions of individual trees are averaged (or sometimes 

weighted) to obtain the final ensemble prediction. In the case of classification tasks, a majority vote is 

typically used. 

Random Forest Prediction: The final prediction from the Random Forest ensemble is the average (or 

weighted average) of the predictions made by individual trees. This prediction tends to be more 

accurate and less prone to overfitting compared to a single decision tree. 

Evaluation: The performance of the Random Forest regression model is evaluated using appropriate 

metrics like Mean Absolute Error (MAE), Mean Squared Error (MSE), or R-squared (R2) on a 

separate validation or test dataset. 

3.4 Advantages 

The outlined methodology for predictive analytics in smart irrigation systems offers several notable 

advantages, making it a powerful approach for optimizing water management in agriculture and 

landscaping: 

• Data-Driven Decision Making: By utilizing data collected from Node MCU devices and 

employing machine learning models, this methodology enables data-driven decision-making 

in water management. This means that irrigation decisions are based on real-time and 

historical data, leading to more informed and precise actions. 

• Precision Irrigation: One of the primary advantages is the ability to achieve precision in 

irrigation. Machine learning models, such as Random Forest Classifier and Regression, can 

determine exactly when and how much water is needed for different crops and conditions. 

This precision minimizes over-irrigation, reducing water wastage and associated costs. 

• Resource Efficiency: The methodology optimizes the allocation of resources, including water, 

energy, and labor. By accurately predicting water requirements and automating the irrigation 

process, it maximizes resource efficiency, leading to reduced operational costs and improved 

sustainability. 
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4.RESULTS 

Figure 5 represents the initial dataset employed in the context of smart irrigation. This dataset serves 

as the fundamental source of information for all subsequent analyses and modeling. It contains 

various data points, each capturing different aspects of the smart irrigation system, such as soil 

moisture levels, weather conditions, crop types, and potentially other pertinent variables. This raw 

dataset reflects the real-world measurements collected from sensors, such as those embedded in Node 

MCU devices deployed throughout the irrigation setup. These data points represent unprocessed 

observations and may contain missing values, outliers, or inconsistencies. Before meaningful analysis 

can occur, this raw data must undergo a crucial data preprocessing step, which involves cleaning the 

data to rectify errors, handling missing information, and ensuring that the dataset is structured for 

machine learning or statistical analysis.  

 
Figure 5: Sample dataset used for Smart irrigation 

Figure 6 presents the same dataset as Figure 1 but after undergoing data preprocessing. This processed 

dataset has been cleaned and transformed to ensure that it is suitable for analysis. Preprocessing steps 

include handling missing values, removing duplicates, encoding categorical variables, and addressing 

any inconsistencies.  

 
Figure 6: Sample dataset used for Smart irrigation after preprocessing. 

Figure 7 displays a subset of columns from the dataset, specifically focusing on the features used for 

classification tasks. These features are essential variables that serve as input to machine learning 
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models designed to predict whether the irrigation pump should be turned on or off based on the 

provided conditions. Examples of features could include weather conditions, soil moisture levels, and 

other relevant environmental factors. These columns represent the predictive variables that help the 

model make informed decisions regarding the operation of the irrigation system. 

Figure 8 represents the target column within the dataset. This column typically contains the variable 

of primary interest, which, in this case, is likely binary in nature, indicating whether the irrigation 

pump should be turned on (coded as 1) or off (coded as 0) based on the given conditions. The target 

column serves as the ground truth for training and evaluating classification models. It is the variable 

that the machine learning algorithm aims to predict accurately, and it forms the basis for assessing the 

model's performance in determining when to activate or deactivate the irrigation pump. 

Figure 9 likely illustrates the output or predictions generated by a regression model designed to 

estimate the number of liters of water needed for irrigation. These predictions are based on input 

features from the dataset, such as soil moisture levels, weather conditions, and other relevant factors.  

 
Figure 7: Features columns of a dataset used for classification 

 

 

 
Figure 8: target column of the dataset 

Figure 10 likely presents performance metrics used to evaluate the accuracy of the regression model's 

predictions for the number of liters of water required. Common regression metrics, such as Mean 

Absolute Error (MAE), Mean Squared Error (MSE), and R-squared (R2), may be included to assess 

the quality of the model's predictions and its ability to estimate water requirements effectively. Figure 

7 is likely a graphical representation of the performance metrics presented in Figure 6. It may employ 

visual tools such as bar charts, line plots, or other graphical elements to provide a clear and intuitive 
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understanding of how well the regression model performs in predicting water requirements. These 

visualizations help stakeholders assess the accuracy and reliability of the model's predictions. 

 
Figure 9: Prediction results for number of Liters to be watered

 
Figure 6: Performances metrics for predicting number of Liters to be watered. 

 

Figure 11 displays the predictions generated by a regression model regarding the amount of time 

required to complete the irrigation process. These predictions are based on input features such as soil 

moisture levels, weather conditions, and other relevant factors. This figure provides estimates of the 

duration needed for the irrigation system to supply water effectively. 

Figure 12 probably includes performance metrics designed to assess the accuracy of the regression 

model's predictions regarding the time required for irrigation. These metrics include Mean Absolute 

Error (MAE), Mean Squared Error (MSE), or other relevant measures to evaluate how well the model 

estimates the irrigation duration. 

Figure 13 represents predictions for the number of days before the land needs to be watered again 

following irrigation. These predictions take into account factors such as soil moisture retention and 

crop type to estimate the optimal timing for subsequent irrigation. This information is vital for 

maintaining soil health and crop growth. 

Figure 14 presents performance metrics that evaluate the accuracy of the model in predicting the 

optimal timing for the next irrigation cycle. These metrics provide insights into how well the model 

optimizes the irrigation schedule, contributing to efficient water management. 

Figure 15 probably displays predictions generated by a classification model that determines whether 

the irrigation pump should be turned on or off based on the input features. These predictions are 

binary, indicating the recommended action of either activating the pump (1) or deactivating it (0) 

under specific conditions. 

Figure 16 comprises a detailed classification report for the Random Forest classifier model. This 

report typically includes metrics such as precision, recall, F1-score, and support, providing a 

comprehensive assessment of the model's performance in classifying when to activate or deactivate 

the irrigation pump. 

Figure 17 presents a heatmap representation of the confusion matrix for the Random Forest classifier. 

The confusion matrix visually displays the true positive, true negative, false positive, and false 
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negative values, allowing for a visual assessment of the model's classification accuracy and error 

distribution. 

Figure 18 serves as a summary or visualization of the overall predictions and outcomes generated by 

the smart irrigation system. It integrates both the classification (pump on/off) and regression (water 

volume, time, and irrigation schedule) results, providing a holistic view of the system's 

recommendations for efficient water management in the context of smart irrigation. 

 

 
Figure 10: plot for representation of performance metrics 

 

 
Figure 11: Prediction results for time to water the land 

 
Figure 12: Performance evaluation for time to water the land 
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Figure 13: Prediction results for days to water the land after the land is watered 

 
Figure 14: Performance metrics for days to water the land after the land is watered 

 
Figure 12: Prediction results for classification of pump on or off 

 
Figure 15: Classification report for Random Forest classifier 

 

Figure 16: Confusion matrix heatmap for Random Forest classifier 
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Figure 17: Prediction results for Smart irrigation. 

Table 2 compares the overall performance comparison of various ML models.Accuracy is a measure 

of how well a model correctly predicts both the positive and negative classes. In this table, the 

accuracy percentages indicate the overall correctness of the models' predictions. For example, the 

Naive Bayes Classifier achieves an accuracy of 72%, while the RFC (Random Forest Classifier) 

achieves an accuracy of 97%. This suggests that the RFC model performs significantly better in terms 

of overall accuracy. 

Precision measures the proportion of true positive predictions among all the positive predictions made 

by the model. It indicates how well the model avoids false positives. For the Naive Bayes Classifier, 

the precision for the positive class is 83%, while for the RFC classifier, it is 97%. The RFC model 

demonstrates higher precision, meaning it has a lower rate of false positive predictions. Recall, also 

known as sensitivity, measures the proportion of true positive predictions among all actual positive 

instances. It indicates how well the model captures positive cases. In this table, the Naive Bayes 

Classifier has a recall of 72%, while the RFC classifier has a recall of 97%. The RFC model excels in 

capturing positive instances, resulting in a higher recall. 

 The F1-score is the harmonic mean of precision and recall. It provides a balanced measure of a 

model's performance, considering both false positives and false negatives. For the Naive Bayes 

Classifier, the F1-score is 85%, whereas for the RFC classifier, it is also 97%. The RFC model 

demonstrates a better balance between precision and recall, leading to a higher F1-score. 

 

Table 2: Overall performance comparison of proposed ML models. 

Model name Accuracy (%) Precision (%) Recall (%) F1-score 

Naive bayes Classifier 72 83 72 85 

RFC classifier 97 97 97 97 

 

Table 3 presents a detailed comparison of the class-wise performance metrics for two machine 

learning models: the Naive Bayes Classifier and the RFC. The models are evaluated based on their 

ability to classify instances into two classes: "Pump OFF" and "Pump ON." 
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• Pump OFF: This row represents performance metrics for the "Pump OFF" class. 

• Precision: Precision for "Pump OFF" measures how accurately the model predicts 

instances when the pump should be turned off. For the Naive Bayes Classifier, the 

precision is 0.73, indicating that 73% of the predicted "Pump OFF" instances were 

correct. In contrast, the RFC classifier achieves a perfect precision of 100% for this class, 

meaning it correctly identifies all instances of "Pump OFF." 

• Recall: Recall (or sensitivity) for "Pump OFF" measures the model's ability to capture all 

actual instances when the pump should be turned off. The Naive Bayes Classifier has a 

recall of 0.86, signifying that it captures 86% of the actual "Pump OFF" instances. The 

RFC classifier has a recall of 94%, indicating that it captures 94% of the "Pump OFF" 

instances. 

• F1-score: The F1-score for "Pump OFF" is the harmonic mean of precision and recall, 

providing a balanced measure of the model's performance. The Naive Bayes Classifier 

achieves an F1-score of 0.85 for "Pump OFF," while the RFC classifier attains an F1-

score of 0.97. The RFC model demonstrates a more balanced performance in terms of 

precision and recall for this class. 

Pump ON: This row represents performance metrics for the "Pump ON" class. 

• Precision: Precision for "Pump ON" measures how accurately the model predicts 

instances when the pump should be turned on. The Naive Bayes Classifier achieves a 

precision of 0.88, indicating that 88% of the predicted "Pump ON" instances are correct. 

The RFC classifier achieves a precision of 95% for this class. 

• Recall: Recall for "Pump ON" assesses the model's ability to capture all actual instances 

when the pump should be turned on. The Naive Bayes Classifier has a recall of 0.97, 

signifying that it captures 97% of the actual "Pump ON" instances. The RFC classifier 

achieves a perfect recall of 100%, indicating that it captures all "Pump ON" instances. 

• F1-score: The F1-score for "Pump ON" is the harmonic mean of precision and recall, 

providing a balanced measure of the model's performance. The Naive Bayes Classifier 

achieves an F1-score of 0.88 for "Pump ON," while the RFC classifier attains an F1-score 

of 0.97. The RFC model demonstrates a more balanced performance for this class as well. 

Table 3: Class-wise performance comparison of proposed ML models. 

 

Model name 

Naive bayes Classifier RFC classifier 

Pump OFF Pum ON Pump OFF Pum ON 

Precision 0.73 0.88 100 95 

Recall 0.86 0.97 94 100 

F1-score 0.85 0.88 97 97 

 

5.CONCLUSION 

In conclusion, the implementation of predictive analytics for optimal water management in smart 

irrigation systems represents a transformative approach to address the pressing challenges of water 

scarcity, resource efficiency, and sustainability in agriculture and landscaping. This methodology, 
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built upon the collection of data from Node MCU devices, data preprocessing, machine learning 

models, and precise decision-making, offers a host of advantages. It enables data-driven, precision 

irrigation, leading to reduced water wastage, resource efficiency, and cost savings. The adaptability to 

changing weather conditions, remote monitoring, and environmental benefits contribute to responsible 

water management and reduced environmental impact. Moreover, the potential for increased crop 

yields and scalability make this approach invaluable to both small-scale farmers and large commercial 

operations. As global concerns about water resources and sustainable agriculture intensify, the 

application of predictive analytics in smart irrigation systems stands as a promising solution to 

address these challenges effectively. 
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