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ABSTRACT 

The examination of weather's influence on energy consumption originates from the inception of 

contemporary energy systems. Historically, energy demand was predominantly assessed using 

seasonal fluctuations and historical consumption data. The digital revolution catalysed the 

significance of incorporating weather data into energy assessments. Initial research employed 

fundamental statistical models to establish a correlation between meteorological patterns and energy 

consumption. Nonetheless, the advent of machine learning methodologies in the past twenty years has 

transformed this domain. The employment of decision trees, random forests, and neural networks has 

allowed academics to develop highly precise predictive models. This research utilizes historical 

developments and advanced technology to investigate the correlation between weather patterns and 

energy usage in smart homes, thereby advancing the progress of energy-efficient technologies and 

practices. This research seeks to examine the complex interaction between weather patterns and 

energy use in smart homes using regression analysis. In addition, it utilizes machine learning 

approaches to investigate predictive models that analyze the influence of meteorological variables on 

overall energy demand in these contexts. The proposed methodology employs decision tree and 

random forest regression techniques, yielding significant insights into energy usage trends across 

different weather situations. 

Keywords: Weather impact, Energy Consumption, Smart Homes, Predictive models, Regression 

analysis, Machine Learning. 

1. INTRODUCTION 

The convergence of technology and sustainability has facilitated advancements in smart home 

systems, transforming our interaction with living environments. In the current age of smart houses, 

comprehending energy consumption patterns is essential for homeowners aiming for efficient energy 

management, as well as for energy providers and policymakers pursuing sustainable practices. The 

notion of smart houses has advanced considerably due to the emergence of the Internet of Things 

(IoT) and artificial intelligence. Contemporary smart houses are furnished with several sensors and 

devices that gather extensive data, encompassing temperature, humidity, occupancy, and energy 
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consumption. Smart meters precisely measure electricity use at a high frequency, significantly 

transforming electricity data collecting and facilitating the move to domestic energy efficiency [1]. 

High-frequency interval meter data, usually recorded hourly and every 15 minutes, offers significant 

and detailed insights into residential usage trends. Smart meter data can facilitate the clustering, 

classification, prediction, and optimization of electricity usage patterns using various analytical 

methodologies and approaches [2].  

The prevalence of smart meters has surged significantly over the last decade, escalating from 

approximately 2.5 million units deployed worldwide in 2007 to almost 729.1 million in 2019, marking 

a 294-fold rise, with the United States and China representing the majority at 85.4%. Smart meters 

furnish utilities with comprehensive data and facilitate efficient demand-side management. Since 

2013, two-way AMI meters, enabling communication between electric utilities and customers, have 

become increasingly common. By supplying real-time or near real-time electrical data, it facilitates 

intelligent consumption apps tailored to consumer preferences and demand. This data offers a unique 

opportunity to examine and comprehend the elements affecting energy use, especially the influence of 

weather patterns. Weather variables, including temperature and humidity, have historically influenced 

energy consumption; nevertheless, the intricacy of these connections necessitates advanced data 

analysis techniques. Conventional methods frequently fail to capture intricate linkages, hence 

requiring the application of machine learning algorithms for accurate predictions. This study explores 

the complex interaction between weather patterns and energy use in smart homes. The study utilizes 

advanced regression analysis and machine learning approaches to reveal underlying trends, offering 

insights that can enhance energy efficiency, lower expenses, and promote environmental 

sustainability. Comprehending the correlation between meteorological patterns and energy 

consumption is essential for smart homes and sustainable energy utilization. Given the growing 

significance of smart home technologies and the heightened emphasis on energy efficiency, it is 

essential to examine the determinants that affect energy usage. This study examines the influence of 

weather factors, including temperature, humidity, and precipitation, on energy load, thereby fulfilling 

a critical requirement for optimizing energy use in smart homes. These findings are essential for 

homes and energy providers, facilitating educated decisions to improve energy efficiency and save 

expenses.  

2. LITERATURE SURVEY 

High-frequency electricity data helps understand the electricity consumption patterns in different 

consumer groups at various time periods, and the changes in behaviors after the adoption of new 

technologies and demand-side management measures. Further, high-frequency data increases the 

accuracy of energy consumption forecasts due to the larger variation provided by the data.Applying 

high frequency electricity data during pandemic times, studies have analyzed and examined the 

overall impact of COVID-19 on energy consumption and transition in pre- and post-pandemic. The 

world has seen a shift in people's habits and daily activities due to the pandemic. Therefore, electricity 

consumption patterns in both residential and commercial buildings have changed. Ku et al. [5] used 

individual hourly power consumption data within a machine learning framework to examine changes 

in electricity use patterns due to COVID-19 mandates in Arizona. Chinthavali et al. [6] examined 

changes in energy use patterns on weekdays and weekends before and after the COVID-19 

pandemic. Raman and Peng [7] used residential electricity consumption data to reveal a strong 

positive correlation between pandemic progress and residential electricity consumption in 

Singapore. Li et al. analyzed data from apartments in New York to examine the impact of the number 

of COVID-19 cases and the outdoor temperature on residential electricity usage [8].  
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Lou et al. found that the COVID-19 measures increased residential electricity consumption by 4–5% 

and exacerbated energy insecurity using individual smart meter data from Arizona and Illinois 

[9]. Sánchez-López et al. explored the evolution of energy demands with hourly data among 

residential, commercial, and industrial demand during the first wave of COVID-19 [10]. 

Understanding how household hourly electricity demand changes after the pandemic, especially due 

to working from home, provides electricity system operators with valuable information in operation 

and management. Also, based on the changes in the spatial and temporal distributions of energy 

consumption, policymakers could make better decisions to increase the ratio of power supply from 

renewable energy sources. 

The application of high frequency electricity data could help understand the electricity consumption 

patterns of specific consumer groups, especially families that have adopted new technologies [e.g., 

Photovoltaics (PV), batteries, and electric Vehicles (EV)]. Qiu et al. [11] applied a difference-in-

differences approach to 1600 EV households' high frequency smart meter data and found that people 

increased EV charging in lower-priced off-peak hours.  

Al Khafaf et al. [12] compared the electricity consumption of consumers with PV and energy storage 

systems (ESS) against consumers without ESS using over 5,000 energy consumers' 30-min window 

smart meters recording. They found that on extremely hot days, installing batteries, to some extent, 

reduces peak power usage in the afternoon. Using household hourly electricity data in Arizona, in [13] 

Qiu et al. (2022b) found a high degree of heterogeneity in consumption patterns of PV consumers 

after adding battery storage. As to heat pump adoption, Liang et al. (2022a) provided empirical 

evidence from Arizona which suggested that heat pumps do not necessarily save energy [14].  

3. PROPOSED METHODOLOGY 

This research explores the intricate relationship between weather patterns and energy consumption in 

smart homes, employing sophisticated data analysis techniques and machine learning algorithms. In 

this endeavour, this work analyzes a dataset containing information about weather variables such 

astemperature, humidity, and precipitation, alongside energy consumption data from smart homes.  
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Figure 1: Proposed methodology of ML-based energy consumption prediction in smart homes. 

The primary objective is to discern patterns and correlations within this data to understand how 

weather conditions impact energy usage. 

⎯ Data Analysis and Preprocessing:This initiates with data preprocessing, addressing missing 

values and ensuring data integrity. Basic statistical analyses and visualization tools are 

employed to gain a comprehensive understanding of the dataset. Exploratory data analysis 

techniques are utilized to visualize trends, histograms, and correlations among variables, 

providing valuable insights into the data's structure. 

⎯ Machine Learning Models:To uncover the intricate relationships hidden within the data, 

advanced machine learning models are implemented. The project employs two primary 

regression algorithms: Decision Tree Regressor and Random Forest Regressor. These 

algorithms are trained on the preprocessed data, utilizing historical weather and energy 

consumption patterns to make predictions. Decision trees offer interpretable insights into 

feature importance, while random forests leverage multiple decision trees for enhanced 

accuracy and robustness. 

⎯ Analysis and Interpretation:The models' predictions are rigorously analyzed, evaluating their 

accuracy and effectiveness in forecasting energy consumption based on weather patterns. Key 

performance metrics, such as R-squared scores, are calculated to quantify the models' 

predictive power. These metrics offer crucial insights into the models' ability to capture the 

complexities of energy usage dynamics in response to changing weather conditions. 

⎯ Significance and Implications:Thefindings have profound implications for various 

stakeholders. Homeowners can optimize their energy usage, reducing costs and environmental 
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impact. Energy providers can enhance their demand forecasting, ensuring a stable energy 

supply. Policymakers gain valuable insights for crafting sustainable energy policies, aligning 

urban planning with energy efficiency goals. Moreover, the project showcases the potential of 

machine learning in addressing real-world challenges, underlining its significance in the 

realm of energy management and sustainability. 

⎯ Future Directions:Looking forward, this work lays the foundation for future research avenues. 

Refining machine learning models, integrating real-time data, exploring regional variations, 

and diversifying applications across sectors are promising directions. These advancements 

hold the potential to create even more accurate, responsive, and adaptable energy 

management systems, ushering in a future of sustainable and efficient energy usage. 

Random Forest Regressor 

Random Forest is an ensemble learning method, meaning it combines the predictions of multiple 

individual algorithms (in this case, decision trees) to create a more accurate and robust model. In the 

case of regression tasks, where the goal is to predict a continuous numerical value (like energy 

consumption), the algorithm is called a Random Forest Regressor. Overall, the Random Forest 

Regressor plays a crucial role in accurately predicting energy consumption in smart homes based on 

weather patterns. Its ability to handle non-linearity, provide feature importance insights, and maintain 

robustness makes it a suitable choice for this complex predictive task. 

 

Figure 2: Working of RFR model. 

Working 

Decision Trees:Random Forest starts by creating a multitude of decision trees. Each tree is trained on 

a random subset of the data and a random subset of features. This randomness helps the trees to be 

diverse and not overly reliant on a specific subset of the data. 

Voting Mechanism:When it's time to make a prediction, each individual tree in the forest produces its 

own prediction. In the case of regression, the predictions from each tree are averaged to produce the 

final output. This averaging process results in a more accurate and stable prediction than relying on 

any single decision tree. 

Handling Complexity:Random Forests are powerful because they can handle a large number of 

features and complex relationships between features and the target variable. Each tree, being a part of 

the forest, contributes its understanding of these relationships. When combined, they provide a 

comprehensive view of how different weather variables affect energy consumption. 

4. RESULTS AND DISCUSSION 
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4.1 Implementation Description 

This research implements a regression analysis to explore the relationship between weather patterns 

and energy consumption in smart homes. Below is the step-by-step explanation: 

1. Importing Libraries: The project begins by importing the necessary libraries for data manipulation, 

analysis, and machine learning. These libraries include pandas for handling data, numpy for numerical 

operations, matplotlib and seaborn for data visualization, and machine learning libraries from sklearn 

for regression analysis. 

2. Loading the Dataset: The dataset is loaded using pd.read_csv(), assuming the dataset is stored in a 

CSV file named "Data.csv." The dataset is stored in the dfDataFrame. 

3. Data Processing 

⎯ Handling Missing Data: The code checks for missing values in the dataset using 

df.isnull().sum().Missing values are dropped from the dataset using df.dropna(inplace=True). 

⎯ Exploring the Dataset: The code provides an overview of the dataset using df.info(), 

df.head(), and df.describe() to check the data's structure, the first few rows, and basic 

statistics. 

⎯ Data Visualization: There is some data visualization using matplotlib and seaborn. For 

example, it creates a histogram of the "total load forecast" column using plt.hist(). 

⎯ Correlation Analysis: The code calculates the correlation matrix between numerical variables 

in the dataset using df.corr(). It also displays correlations in descending order with respect to 

the "total load forecast" variable. 

4. Data Splitting: The dataset is split into training and testing sets using train_test_split from sklearn. 

The features (X) and the target variable (y) are separated, and standard scaling is applied to the 

features using StandardScaler. 

5. Model Training 

⎯ Decision Tree Regressor: A Decision Tree Regressor is created and trained using the training 

data with hyperparameters like max depth, min samples split, and min samples leaf specified. 

⎯ Random Forest Regressor: A Random Forest Regressor is created and trained using the 

training data. 

6. Model Evaluation: The code evaluates the performance of the Decision Tree and Random Forest 

regressors using the coefficient of determination (R-squared) as a metric, which measures the 

goodness of fit of the models to the data. 

4.2Results and description  

Figure 3 depicts the graphical user interface (GUI) of Smart Homes, presumably showcasing the 

interface through which users interact with various smart home functionalities. This interface includes 

features such as controlling lighting, thermostats, security systems, and other connected devices 

remotely or through automated schedules. The GUI could also display real-time data about energy 

consumption, indoor air quality, or other relevant metrics, allowing users to make informed decisions 

about managing their home environment. Figure 4, it presents the data preprocessing steps undertaken 

before applying a linear regression model. Data preprocessing is a crucial step in machine learning 

pipelines as it involves cleaning, transforming, and organizing raw data to make it suitable for 

analysis. This figure includes processes such as handling missing values, scaling features, encoding 
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categorical variables, and splitting the data into training and testing sets. Additionally, the R2 score of 

the linear regression model is displayed, which indicates the proportion of the variance in the 

dependent variable that is predictable from the independent variables. 

 

Figure 3: Presents the GUI of Smart Homes. 

 

Figure 4: Presents the Data Preprocessing and R2 Score of Linear Regression model. 

Figure 5 shows the results of applying the linear regression model to the test data. This includes a plot 

comparing the actual values of the dependent variable against the predicted values generated by the 

model. The accuracy of the model's predictions can be evaluated visually by observing how closely 

the predicted values align with the actual values. Moving on to Figure 6, it displays the R2 score of a 

decision tree regression model. Decision tree regression is a non-parametric supervised learning 

method used for regression tasks. The R2 score provides insight into how well the decision tree model 

fits the data, with a score closer to 1 indicating a better fit. 
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Figure 5: Presents the Linear Regression Model Prediction on Test data. 

 

Figure 6: Presents the R2 Score of Decision Tree Regression model. 

 

Figure 7: Presents Plot of Decision Tree Regression Model Prediction on Test data. 
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Figure 8: Presents the R2 Score of Random Forest Regression model. 

 

Figure 9: Presents Plot of Random Forest Regression Model Prediction on Test data. 

Figure 7 presents a plot illustrating the predictions made by the decision tree regression model on the 

test data. Similar to Figure 3, this plot compares the actual values against the predicted values 

generated by the decision tree model. Figure 8 showcases the R2 score of a random forest regression 

model. Random forest is an ensemble learning method that constructs multiple decision trees during 

training and outputs the average prediction of the individual trees. The R2 score in this figure provides 

an indication of the random forest model's predictive performance. Figure 9 displays a plot depicting 

the predictions made by the random forest regression model on the test data. As with Figures 3 and 5, 

this plot compares the actual values against the predicted values generated by the random forest 

model.Figure 10 presents a comparison graph illustrating the performance of each model (linear 

regression, decision tree regression, and random forest regression) based on their respective R2 

scores. This graph allows for a direct comparison of how well each model fits the data and makes 

predictions. Finally, Figure 11 showcases the predictions made by the proposed model on the test data. 

This represent a novel or improved regression model developed for a specific application, with its 

performance evaluated against existing models through metrics such as R2 score or visual comparison 

of predicted versus actual values. 
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Figure 10: Comparison Graph of each model Performance. 

 

 

Figure 11: Proposed model prediction on test data. 

5. CONCLUSION  

In conclusion, this research has successfully delved into the intricate relationship between weather 

patterns and energy consumption in smart homes, employing advanced regression analysis and 

machine learning techniques. Through meticulous data analysis, meaningful patterns have been 

extracted, shedding light on the impact of weather variables such as temperature, humidity, and 

precipitation on energy load. The developed regression models, particularly the decision tree and 

random forest algorithms, have showcased promising accuracy in predicting energy consumption 

under varying weather conditions. These findings hold substantial implications for homeowners, 

energy providers, and policymakers alike.For homeowners, this study provides actionable insights 

into optimizing energy usage based on weather forecasts. By understanding how weather influences 

energy consumption, homeowners can implement targeted strategies to reduce costs and enhance 

efficiency. Energy providers can benefit from these insights by improving demand forecasting and 

management, ensuring a stable and efficient energy supply. Policymakers can integrate these findings 

into energy policies, fostering sustainable practices and guiding urban planning initiatives. 

Furthermore, this work demonstrates the power of data analytics and machine learning in addressing 

real-world challenges, showcasing their potential in the realm of energy management and 

sustainability. 
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