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ABSTRACT

Before the advent of machine learning and Al, systems predicting human intent and movement relied
heavily on sensor-based approaches like inertial measurement units (IMUs), gyroscopes, and
accelerometers, which primarily tracked physical movements. These systems, while effective in
detecting motion, lacked the nuanced understanding of human intent and environmental context that
could be gained from integrating human gaze. The title "Synergizing Human Gaze with Machine Vision
for Location Mode Prediction™ reflects the integration of human gaze data, which provides information
about where a person is looking (indicating intent), with machine vision systems that process movement
data (cloud points) to predict future locomotion modes or transitions. Before machine learning,
traditional systems for predicting human movement were limited to sensor-based methods such as
IMUs, which could only detect physical movements without understanding the intent behind them.
These systems were less adaptable and often required manual calibration and interpretation by experts.
Traditional sensor-based systems lacked the ability to accurately predict human intent or understand the
contextual environment in real-time, leading to less reliable and slower responses in applications like
wearable robotics. These systems could detect movement but were unable to forecast the user's next
movement or transition. The proposed system, GT-NET, utilizes machine learning algorithms to
combine human gaze data (images) with cloud point data (user movement) for predicting human intent
and locomotion. This system leverages deep learning models trained on a custom dataset, with the aim
of accurately forecasting the user's next movement. By integrating these data modalities, GT-NET
enhances the ability of machines to anticipate human actions, particularly in dynamic environments.

Keywords: Machine Learning, Artificial Intelligence (Al), Deep Learning Models, Cloud.
1. INTRODUCTION

The research focuses on enhancing traditional movement prediction systems by integrating human gaze
data with machine vision. This approach is aimed at improving the accuracy of predicting human intent
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and locomotion, particularly in dynamic environments like smart cities, autonomous vehicles, and
assistive technologies Human movement prediction has traditionally relied on sensor-based systems,
such as Inertial Measurement Units (IMUs), gyroscopes, and accelerometers, which track physical
movements to provide data for various applications. In India, the use of such technology has been
integral in areas like wearable robotics, healthcare, and transportation. However, these sensor-based
systems are limited in their ability to understand human intent and context. For instance, India’s rapid
urbanization has led to an increase in smart city initiatives, but the existing infrastructure lacks
sophisticated tools for anticipating human behavior, which can lead to inefficiencies in areas like traffic
management. With the growing population and urban sprawl, traditional systems are becoming
insufficient, necessitating a more intelligent approach that can merge physical movement data with
cognitive indicators like human gaze.

2. LITERATURE SURVEY

In nature, humans have evolved locomotor skills to adapt to changes of dynamics and functional
requirements when navigating various environments [1]. Aiming at restoring the natural locomotion for
populations with limited mobility such as spinal cord injuries or limb amputations, a number of lower
limb wearable robots (e.g., exoskeleton and robotic prosthesis) have been developed [2]-[5]. However,
due to the lack of connection with the user’s neural control pathway, these wearable robots do not
possess adaptability to environment per the user’s needs. Hence, solutions are needed for lower limb
wearable robots to coordinate with user intent for environmentally adaptive locomotion.

Historically, solutions have first involved recognizing the user’s locomotion mode (e.g., level ground
walking, stair ascent/descent, ramp ascent/descent). On-board mechanical sensors, such as motion and
force sensors and inertial measurement units (IMU) on wearable robots [6]-[9], have been used to
classify different gait patterns, thus inferring the locomotion mode being performed. However, these
mechanical sensors usually do not present significant measurement changes until the switch of
locomotion mode occurs. Such a delayed, reactive response of mechanical sensors-based locomotion
mode recognition system challenges the control of wearable robots to enable seamless transitions
between terrains. In order to predict the locomotion mode transitions, electromyography (EMG) signals,
i.e., efferent neural control signals of limb mechanics, have been used alone [10] or combined [11]-
[13] with mechanical signals to identify the user’s intended locomotion.

One study has shown fusion of EMG and mechanical sensors can improve the accuracy in classifying
the locomotion mode during steady state walking, where EMG signals were essential to ensure accurate
prediction of mode transitions [14]. However, EMG signals alone are usually user-dependent and
sensitive to sensor placement and daily conditions, thus lacking scalability in practice. Another
approach is to use cameras to identify the terrain in front of the user. Equipping wearable robots
informed by machine vision enables the control of robotic limb to make appropriate terrain transitions,
as seen with classification of plain RGB images captured by a camera to identify terrain [15]-[17]. Still
though, as the 3D environment information is compressed, the plain RGB image classification has
limited ability to distinguish terrains with different slopes. Efforts have been made to extract additional
depth information from the environment, by which the depth images and 3D point clouds can be
reconstructed prior to classification

3. PROPOSED SYSTEM
Data Splitting:

1. Divide the Dataset: After preprocessing your dataset, split it into two main subsets: training
and testing. Typically, the training set comprises about 80% of the total data, while the testing
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set includes the remaining 20%. This division helps in evaluating the model’s performance on
unseen data.

Ensure Randomization: Shuffle the dataset before splitting to ensure that the training and
testing sets are representative of the entire dataset. This randomization helps in avoiding bias
and ensures that both subsets contain a diverse range of samples.

Preserve Label Distribution: Maintain the proportion of each class (activity type) in both the
training and testing subsets. This can be achieved through stratified sampling, which ensures
that each subset reflects the overall distribution of labels.

System Architecture Diagram
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Figure 1: Block diagram of the proposed system.

Preprocessing:

1.

Image Resizing: Adjust all images to a uniform size to standardize the input dimensions for
your model. This ensures consistency and allows the model to process the data effectively.

Normalization: Scale the pixel values of images to a range between 0 and 1. Normalization is
crucial as it brings all feature values to a similar scale, which improves the model's convergence
during training.

Data Augmentation (Optional): Enhance the dataset by applying transformations like rotation,
flipping, and scaling to create variations of the existing images. This helps in improving the
model's generalization by exposing it to a wider range of possible inputs.

Label Encoding: Convert categorical labels (e.g., activity types) into numerical format. This
encoding is necessary for the model to interpret and process the labels correctly.

Combine Modalities (If applicable): If your model integrates multiple types of data, such as
images and cloud points, ensure that these modalities are properly aligned and combined. This
might involve concatenating features or structuring the data to match the input requirements of
the model.

Verify Data Integrity: Check that the preprocessing steps have been applied correctly and that
the data is ready for model training. Ensure that all images are properly resized, normalized,
and that labels are correctly encoded and aligned with the data.
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Model Building & Training

Building a machine learning model involves defining the problem and determining the objective, such
as predicting a target variable based on input features. Once the problem is identified, the data is
collected, cleaned, and preprocessed to ensure it's suitable for model training. The next step is selecting
the appropriate algorithm, considering whether the task is classification, regression, or another type.
After choosing the model, it’s trained on the dataset, with hyperparameters tuned for optimal
performance. The model is then evaluated using a separate test set to ensure it generalizes well to unseen
data, followed by deployment if the results are satisfactory.

GT-Net is a Convolutional Neural Network (CNN) designed to process and classify images of human
movements. The process begins with the model's construction, where layers of the network are defined,
and continues through the training phase, where the model learns from a labeled dataset. The model is
then used to predict future locomotion modes from unseen data. The model starts by accepting images
as input, which are then passed through a series of convolutional layers. These layers extract features
from the images by applying filters that detect edges, textures, and other important aspects of the data.
The extracted features are then down sampled through pooling layers, which reduce the spatial
dimensions while retaining the most significant information. The network includes several layers of
convolutions, pooling, batch normalization, and dense (fully connected) layers, which together enable
the model to learn complex patterns in the input data.

4. RESULTS AND DISCUSSION

Figure 2 shows a graphical user interface (GUI) designed for a project titled Synergizing Human Gaze
with Machine Vision for Location Mode Prediction. The interface features a simple layout with a
magenta banner displaying the title at the top. Below this, there is a large blank area, likely reserved for
displaying outputs, datasets, or visualizations. Figure 3 shows the composed of 1584 images that are
labeled with one of these three activities. These labels will be used to train and evaluate the machine
learning model for predicting location modes based on human gaze and machine vision data.

# Symerging Human Gaze with Machin Viion forLocation Mode Predicion - & x

Upload GE Images & Points Dataset Preprocess Dataset Split Dataset Train & Test Run GENet Algorithm

Figure 2: Tkinter Window
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Figure 4: Count plot of Output Variable

Figure 4 shows the image depicts a count plot, a type of bar chart that is particularly useful for
visualizing the distribution of categorical variables. In this case, the plot shows the frequency of
different locomotion types: Jump, Run, and Walk.

@ Synergizing Human Gaze with Machine Vision for Location Mode Prediction - x

Dataset Train & Test Split Completed

Total Images found in dataset : 1584
Total features found in each Image : 32

80% dataset records used to train GENET algorithm : 1267
20% dataset records used to train GENET algorithm : 317

Upload GE Tmages & Points Dataset
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Figure 5: Data Train

Figure 5 consisting of 1,584 images with 32 features each, was split into a training set (80%) of 1,267
images and a testing set (20%) of 317 images to train and evaluate the GENET algorithm. The training
set is used to teach the model by adjusting its parameters based on the input features and their
corresponding labels, allowing the model to learn the underlying patterns in the data. The testing set,
which was not seen during training, is then used to evaluate the model's performance, ensuring that it
can generalize its predictions to new, unseen data. This split is essential for assessing how well the
model can perform in real-world scenarios.
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Figure 6:GT Net (CNN) evacuations matrices

Figure 6 show the performance metrics for the GT-Net model indicate a highly effective model in
predicting outcomes. With an accuracy of approximately 97.79%, the model correctly classifies a high
proportion of instances. The precision of 98.04% reflects the model's ability to accurately identify
positive instances, minimizing false positives. The recall of 97.36% indicates that the model is effective
at capturing most of the actual positive instances, with few false negatives. The F-Score, a harmonic
mean of precision and recall, stands at 97.68%, balancing the model's ability to be both precise and
sensitive.
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Figure 7: Confusion Matric of Proposed Algorithm

Figure 7 shows A confusion matrix for GT-Net reveals its strengths and weaknesses in activity
recognition. The diagonal elements indicate correct classifications, while off-diagonal elements
represent misclassifications. The model excels at classifying "Run" and "Jump" but struggles to
differentiate between “Walk and Run”. To improve performance, it's essential to calculate metrics,
visualize class-wise performance, analyze misclassified data, and consider model adjustments.

GT-Net Accuracy
GT-Net Precision 1
|GT-Net Recall :
GT-Net FScore :

Split Dataset Train & Test | Run GENet Algorithm l

Preprocess Dataset

Upload GE Images & Points Dataset

Forecast Intended Locomotion

Figure 8: Predicted Output (Run)

Figure 8 shows the Predicted Output is running displays the GUI with a pop-up window labelled
Predicted Result showing a person in motion. The red text in the pop-up states Predicted Next
Locomotion: Run, indicating that the system has forecasted running as the next movement.

¢ Synergizing Human Gaze with Machine Vision for Location Mode Prediction g X

GT-Net Accuracy
GT-Net Precision
|GT-Net Recall :
GT-Net FScore :

5 Predicted Result = a X

Split Dataset Train & Test Run GENet Algorithm ‘

Preprocess Dataset

Upload GE Images & Points Dataset

Forecast Intended Locomotion

Figure 9: Predicted Output (Jump)

Figure 9: Predicted output is jumping the image displays an updated version of the graphical user
interface (GUI) for the project titled Synergizing Human Gaze with Machine Vision for Location Mode
Prediction. The interface has a magenta banner at the top, with the title prominently displayed
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5. CONCLUSION

This proposed GT-NET system represents a significant advancement in the field of human movement
and intent prediction by integrating human gaze data with machine vision systems to predict locomotion
modes. Traditional systems, while effective in capturing and recording physical movements, were
inherently limited by their inability to understand the intent behind those movements or to adapt to
different environments and users. These limitations made them less effective in applications requiring
anticipatory actions, such as wearable robotics or advanced driver-assistance systems. GT-NET
overcomes these challenges by leveraging the power of deep learning to combine multiple data
modalities, including human gaze and cloud points from user movement, to create a more
comprehensive and predictive model of human behavior. The integration of human gaze data into the
predictive model is particularly innovative, as it allows the system to infer intent based on where the
user is looking. This information, combined with traditional movement data, enables the system to
anticipate future movements and transitions with greater accuracy. The use of deep learning algorithms
allows GT-NET to learn from a vast amount of data, improving its predictive capabilities over time and
making it adaptable to different users and environments. GT-NET’s ability to predict not just what a
user is currently doing, but what they are likely to do next, represents a shift from reactive to proactive
systems in human-machine interaction. This capability is crucial in applications like wearable robaotics,
where anticipating the user’s next move can enhance safety, efficiency, and overall user experience.
The system's adaptability and learning capabilities make it a powerful tool in various fields, from
healthcare to autonomous vehicles, where understanding and predicting human intent can lead to more
intelligent and responsive systems.
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